In the mathematics of coding theory, the Griesmer bound, named after James Hugo Griesmer, is a bound on the length of linear binary codes of dimension k and minimum distance d.
There is also a very similar version for non-binary codes.
For a binary linear code, the Griesmer bound is:
Let denote the minimum length of a binary code of dimension k and distance d. Let C be such a code. We want to show that
Let G be a generator matrix of C. We can always suppose that the first row of G is of the form r = (1, ..., 1, 0, ..., 0) with weight d.
The matrix generates a code , which is called the residual code of obviously has dimension and length has a distance but we don't know it. Let be such that . There exists a vector such that the concatenation Then On the other hand, also since and is linear: But
so this becomes . By summing this with we obtain . But so we get As is integral, we get This implies
so that
By induction over k we will eventually get
Note that at any step the dimension decreases by 1 and the distance is halved, and we use the identity
for any integer a and positive integer k.
For a linear code over , the Griesmer bound becomes:
The proof is similar to the binary case and so it is omitted.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the mathematics of coding theory, the Plotkin bound, named after Morris Plotkin, is a limit (or bound) on the maximum possible number of codewords in binary codes of given length n and given minimum distance d. A code is considered "binary" if the codewords use symbols from the binary alphabet . In particular, if all codewords have a fixed length n, then the binary code has length n. Equivalently, in this case the codewords can be considered elements of vector space over the finite field .
In applied mathematics, the Johnson bound (named after Selmer Martin Johnson) is a limit on the size of error-correcting codes, as used in coding theory for data transmission or communications. Let be a q-ary code of length , i.e. a subset of . Let be the minimum distance of , i.e. where is the Hamming distance between and . Let be the set of all q-ary codes with length and minimum distance and let denote the set of codes in such that every element has exactly nonzero entries. Denote by the number of elements in .
In coding theory, the Singleton bound, named after Richard Collom Singleton, is a relatively crude upper bound on the size of an arbitrary block code with block length , size and minimum distance . It is also known as the Joshibound. proved by and even earlier by . The minimum distance of a set of codewords of length is defined as where is the Hamming distance between and . The expression represents the maximum number of possible codewords in a -ary block code of length and minimum distance .