Concept

Johnson bound

In applied mathematics, the Johnson bound (named after Selmer Martin Johnson) is a limit on the size of error-correcting codes, as used in coding theory for data transmission or communications. Let be a q-ary code of length , i.e. a subset of . Let be the minimum distance of , i.e. where is the Hamming distance between and . Let be the set of all q-ary codes with length and minimum distance and let denote the set of codes in such that every element has exactly nonzero entries. Denote by the number of elements in . Then, we define to be the largest size of a code with length and minimum distance : Similarly, we define to be the largest size of a code in : Theorem 1 (Johnson bound for ): If , If , Theorem 2 (Johnson bound for ): (i) If (ii) If , then define the variable as follows. If is even, then define through the relation ; if is odd, define through the relation . Let . Then, where is the floor function. Remark: Plugging the bound of Theorem 2 into the bound of Theorem 1 produces a numerical upper bound on .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.