Nitrogen fixation is a chemical process by which molecular nitrogen (N2), which has a strong triple covalent bond, is converted into ammonia (NH3) or related nitrogenous compounds, typically in soil or aquatic systems but also in industry. The nitrogen in air is molecular dinitrogen, a relatively nonreactive molecule that is metabolically useless to all but a few microorganisms. Biological nitrogen fixation or diazotrophy is an important microbe-mediated process that converts dinitrogen (N2) gas to ammonia (NH3) using the nitrogenase protein complex (Nif).
Nitrogen fixation is essential to life because fixed inorganic nitrogen compounds are required for the biosynthesis of all nitrogen-containing organic compounds, such as amino acids and proteins, nucleoside triphosphates and nucleic acids. As part of the nitrogen cycle, it is essential for agriculture and the manufacture of fertilizer. It is also, indirectly, relevant to the manufacture of all nitrogen chemical compounds, which include some explosives, pharmaceuticals, and dyes.
Nitrogen fixation is carried out naturally in soil by microorganisms termed diazotrophs that include bacteria, such as Azotobacter, and archaea. Some nitrogen-fixing bacteria have symbiotic relationships with plant groups, especially legumes. Looser non-symbiotic relationships between diazotrophs and plants are often referred to as associative, as seen in nitrogen fixation on rice roots. Nitrogen fixation occurs between some termites and fungi. It occurs naturally in the air by means of NOx production by lightning.
All biological reactions involving the process of nitrogen fixation are catalyzed by enzymes called nitrogenases. These enzymes contain iron, often with a second metal, usually molybdenum but sometimes vanadium.
Biological nitrogen fixation was discovered by Jean-Baptiste Boussingault in 1838. Later, in 1880, the process by which it happens was discovered by German agronomist Hermann Hellriegel and de and was fully described by Dutch microbiologist Martinus Beijerinck.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
This course on water and wastewater treatment shows how to implement and design different methods and techniques to eliminate organic matter, nitrogen and phosporous from wastewater, and how to apply
Bacteria (bækˈtɪəriə; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere.
A legume (ˈlɛɡjuːm,_ləˈɡjuːm) is a plant in the family Fabaceae (or Leguminosae), or the fruit or seed of such a plant. When used as a dry grain, the seed is also called a pulse. Legumes are grown agriculturally, primarily for human consumption, for livestock forage and silage, and as soil-enhancing green manure. Well-known legumes include beans, soybeans, chickpeas, peanuts, lentils, lupins, grass peas, mesquite, carob, tamarind, alfalfa, and clover.
Cyanobacteria (saɪˌænoʊbækˈtɪəri.ə), also called Cyanobacteriota or Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name cyanobacteria refers to their color (), which similarly forms the basis of cyanobacteria's common name, blue-green algae, although they are not usually scientifically classified as algae. They appear to have originated in a freshwater or terrestrial environment.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Nitrogen limitation is the foundation of stable coral-algal symbioses. Diazotrophs, prokaryotes capable of fixing N-2 into ammonia, support the productivity of corals in oligotrophic waters, but could contribute to the destabilization of holobiont function ...
The substrate-reducing proteins of all nitrogenases (MoFe, VFe, and FeFe) are organized as alpha 2ss2(gamma 2) multimers with two functional halves. While their dimeric organization could afford improved structural stability of nitrogenases in vivo, previo ...
We study the bactericidal efficacy of surface dielectric barrier discharge low-temperature plasma treatments, powered by nanosecond high voltage pulses. We achieve similar to 4-log reduction in Escherichia coli population, after 10 min treatments, at a dis ...