Summary
The exome is composed of all of the exons within the genome, the sequences which, when transcribed, remain within the mature RNA after introns are removed by RNA splicing. This includes untranslated regions of messenger RNA (mRNA), and coding regions. Exome sequencing has proven to be an efficient method of determining the genetic basis of more than two dozen Mendelian or single gene disorders. The human exome consists of roughly 233,785 exons, about 80% of which are less than 200 base pairs in length, constituting a total of about 1.1% of the total genome, or about 30 megabases of DNA. Though composing a very small fraction of the genome, mutations in the exome are thought to harbor 85% of mutations that have a large effect on disease. List of human protein-coding genes 1List of human protein-coding genes 2List of human protein-coding genes 3 and List of human protein-coding genes 4 It is important to note that the exome is distinct from the transcriptome, which is all of the transcribed RNA within a cell type. While the exome is constant from cell-type to cell-type, the transcriptome changes based on the structure and function of the cells. As a result, the entirety of the exome is not translated into protein in every cell. Different cell types only transcribe portions of the exome, and only the coding regions of the exons are eventually translated into proteins. Next-generation sequencing (NGS) allows for the rapid sequencing of large amounts of DNA, significantly advancing the study of genetics, and replacing older methods such as Sanger sequencing. This technology is starting to become more common in healthcare and research not only because it is a reliable method of determining genetic variations, but also because it is cost effective and allows researchers to sequence entire genomes in anywhere between days to weeks. This compares to former methods which may have taken months. Next-gen sequencing includes both whole-exome sequencing and whole-genome sequencing.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.