A solid solution, a term popularly used for metals, is a homogeneous mixture of two different kinds of atoms in solid state and having a single crystal structure. Many examples can be found in metallurgy, geology, and solid-state chemistry. The word "solution" is used to describe the intimate mixing of components at the atomic level and distinguishes these homogeneous materials from physical mixtures of components. Two terms are mainly associated with solid solutions – solvents and solutes, depending on the relative abundance of the atomic species.
In general if two compounds are isostructural then a solid solution will exist between the end members (also known as parents). For example sodium chloride and potassium chloride have the same cubic crystal structure so it is possible to make a pure compound with any ratio of sodium to potassium (Na1-xKx)Cl by dissolving that ratio of NaCl and KCl in water and then evaporating the solution. A member of this family is sold under the brand name Lo Salt which is (Na0.33K0.66)Cl, hence it contains 66% less sodium than normal table salt (NaCl). The pure minerals are called halite and sylvite; a physical mixture of the two is referred to as sylvinite.
Because minerals are natural materials they are prone to large variations in composition. In many cases specimens are members for a solid solution family and geologists find it more helpful to discuss the composition of the family than an individual specimen. Olivine is described by the formula (Mg, Fe)2SiO4, which is equivalent to (Mg1−xFex)2SiO4. The ratio of magnesium to iron varies between the two endmembers of the solid solution series: forsterite (Mg-endmember: Mg2SiO4) and fayalite (Fe-endmember: Fe2SiO4) but the ratio in olivine is not normally defined. With increasingly complex compositions the geological notation becomes significantly easier to manage than the chemical notation.
The IUPAC definition of a solid solution is a "solid in which components are compatible and form a unique phase".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Basic theoretical aspects of Crystallography and the interaction between X-ray radiation and matter. Experimental aspects of materials-oriented powder and single crystal diffraction. Familiarization w
Ce cours constitue une introduction aux principes qui régissent l'élaboration, la microstructure et les propriétés des matériaux métalliques. Trois systèmes principaux d'alliages (Al, Cu, Fe) seront u
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
Covers titanium metallurgy, including production processes, phase diagrams, and interstitial solid solutions, highlighting the technical importance and cost factors.
A chemical substance is a form of matter having constant chemical composition and characteristic properties. Chemical substances can be simple substances (substances consisting of a single chemical element), chemical compounds, or alloys. Chemical substances that cannot be separated into their simpler constituent elements by physical means are said to be 'pure'; this notion intended to set them apart from mixtures.
A eutectic system or eutectic mixture (juːˈtɛktɪk ) is a homogeneous mixture that has a melting point lower than those of the constituents. The lowest possible melting point over all of the mixing ratios of the constituents is called the eutectic temperature. On a phase diagram, the eutectic temperature is seen as the eutectic point (see plot on the right). Non-eutectic mixture ratios would have different melting temperatures for their different constituents, since one component's lattice will melt at a lower temperature than the other's.
Cleavage, in mineralogy and materials science, is the tendency of crystalline materials to split along definite crystallographic structural planes. These planes of relative weakness are a result of the regular locations of atoms and ions in the crystal, which create smooth repeating surfaces that are visible both in the microscope and to the naked eye. If bonds in certain directions are weaker than others, the crystal will tend to split along the weakly bonded planes. These flat breaks are termed "cleavage".
The high zinc and iron contents of electric arc furnace (EAF) dust in the forms of zinc ferrite (ZnFe2O4) and magnetite (Fe3O4) make it a valuable secondary source of these metals. ZnFe2O4 and Fe3O4 are known to form a solid solution at all compositions, a ...
SPRINGER2023
Related MOOCs (2)
Sorption of mercury (Hg) in soils is suggested to be predominantly associated with organic matter (OM). However, there is a growing collection of research that suggests that clay minerals and oxides are also important solid phases for the sorption of solu ...
2024
, , , ,
The biological reduction of soluble U(VI) complexes to form immobile U(IV) species has been proposed to remediate contaminated sites. It is well established that multiheme c-type cytochromes (MHCs) are key mediators of electron transfer to aqueous phase U( ...