The situation calculus is a logic formalism designed for representing and reasoning about dynamical domains. It was first introduced by John McCarthy in 1963. The main version of the situational calculus that is presented in this article is based on that introduced by Ray Reiter in 1991. It is followed by sections about McCarthy's 1986 version and a logic programming formulation.
The situation calculus represents changing scenarios as a set of first-order logic formulae. The basic elements of the calculus are:
The actions that can be performed in the world
The fluents that describe the state of the world
The situations
A domain is formalized by a number of formulae, namely:
Action precondition axioms, one for each action
Successor state axioms, one for each fluent
Axioms describing the world in various situations
The foundational axioms of the situation calculus
A simple robot world will be modeled as a running example. In this world there is a single robot and several inanimate objects. The world is laid out according to a grid so that locations can be specified in terms of coordinate points. It is possible for the robot to move around the world, and to pick up and drop items. Some items may be too heavy for the robot to pick up, or fragile so that they break when they are dropped. The robot also has the ability to repair any broken items that it is holding.
The main elements of the situation calculus are the actions, fluents and the situations. A number of objects are also typically involved in the description of the world. The situation calculus is based on a sorted domain with three sorts: actions, situations, and objects, where the objects include everything that is not an action or a situation. Variables of each sort can be used. While actions, situations, and objects are elements of the domain, the fluents are modeled as either predicates or functions.
The actions form a sort of the domain. Variables of sort action can be used. Actions can be quantified.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In artificial intelligence, with implications for cognitive science, the frame problem describes an issue with using first-order logic (FOL) to express facts about a robot in the world. Representing the state of a robot with traditional FOL requires the use of many axioms that simply imply that things in the environment do not change arbitrarily. For example, Hayes describes a "block world" with rules about stacking blocks together.
In artificial intelligence, a fluent is a condition that can change over time. In logical approaches to reasoning about actions, fluents can be represented in first-order logic by predicates having an argument that depends on time. For example, the condition "the box is on the table", if it can change over time, cannot be represented by ; a third argument is necessary to the predicate to specify the time: means that the box is on the table at time .
The event calculus is a logical language for representing and reasoning about events and their effects first presented by Robert Kowalski and Marek Sergot in 1986. It was extended by Murray Shanahan and Rob Miller in the 1990s. Similar to other languages for reasoning about change, the event calculus represents the effects of actions on fluents. However, events can also be external to the system. In the event calculus, one can specify the value of fluents at some given time points, the events that take place at given time points, and their effects.
Virtual reality is gaining on importance in many fields – scientific simulation, training, therapy and also more and more in entertainment. All these applications require the human user to interact with virtual worlds inhabited by intelligent characters an ...
We introduce TOQL, a query language for querying time information in ontologies. TOQL is a high level query language that handles ontologies almost like relational databases. Queries are issued as SQL-like statements involving time (i.e., time points or in ...
Mixing liquids at the micro-scale is difficult because the low Reynolds numbers in microchannels and in microreactors prohibit the use of conventional mixing techniques based on mechanical actuators and induce turbulence. Static mixers can be used to solve ...