An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels. Most normal cells will undergo a programmed form of rapid cell death (apoptosis) when critical functions are altered and malfunctioning. Activated oncogenes can cause those cells designated for apoptosis to survive and proliferate instead. Most oncogenes began as proto-oncogenes: normal genes involved in cell growth and proliferation or inhibition of apoptosis. If, through mutation, normal genes promoting cellular growth are up-regulated (gain-of-function mutation), they will predispose the cell to cancer; thus, they are termed "oncogenes". Usually multiple oncogenes, along with mutated apoptotic or tumor suppressor genes will all act in concert to cause cancer. Since the 1970s, dozens of oncogenes have been identified in human cancer. Many cancer drugs target the proteins encoded by oncogenes. The theory of oncogenes was foreshadowed by the German biologist Theodor Boveri in his 1914 book Zur Frage der Entstehung Maligner Tumoren (Concerning the Origin of Malignant Tumors) in which he predicted the existence of oncogenes (Teilungsfoerdernde Chromosomen) that become amplified (im permanenten Übergewicht) during tumor development. Later on, the term "oncogene" was rediscovered in 1969 by National Cancer Institute scientists George Todaro and Robert Huebner. The first confirmed oncogene was discovered in 1970 and was termed SRC (pronounced "sarc" as it is short for sarcoma). SRC was first discovered as an oncogene in a chicken retrovirus. Experiments performed by Dr. G. Steve Martin of the University of California, Berkeley demonstrated that SRC was indeed the gene of the virus that acted as an oncogene upon infection. The first nucleotide sequence of v-Src was sequenced in 1980 by A.P. Czernilofsky et al. In 1976, Drs. Dominique Stéhelin, J. Michael Bishop and Harold E. Varmus of the University of California, San Francisco demonstrated that oncogenes were activated proto-oncogenes as is found in many organisms, including humans.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
BIO-471: Cancer biology I
The course covers in detail molecular mechanisms of cancer development with emphasis on cell cycle control, genome stability, oncogenes and tumor suppressor genes.
BIO-392: Oncology
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
Related lectures (25)
DNA Repair Mechanisms
Explores DNA repair mechanisms, DNA damage response, and synthetic lethality in cancer.
Virus and Cell Proliferation
Delves into how viruses aid in understanding cell proliferation control mechanisms and gene expression regulation for the S phase.
DNA Damage Response and Tumor Suppressor Genes
Delves into DNA damage response, tumor suppressor genes, and mutant P53 in cancer.
Show more
Related publications (61)
Related concepts (28)
Cancer
Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal bleeding, prolonged cough, unexplained weight loss, and a change in bowel movements. While these symptoms may indicate cancer, they can also have other causes. Over 100 types of cancers affect humans. Tobacco use is the cause of about 22% of cancer deaths.
P53
p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often spoken of as, a single protein) are crucial in vertebrates, where they prevent cancer formation. As such, p53 has been described as "the guardian of the genome" because of its role in conserving stability by preventing genome mutation. Hence TP53 is classified as a tumor suppressor gene.
Signal transduction
Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events. Most commonly, protein phosphorylation is catalyzed by protein kinases, ultimately resulting in a cellular response. Proteins responsible for detecting stimuli are generally termed receptors, although in some cases the term sensor is used. The changes elicited by ligand binding (or signal sensing) in a receptor give rise to a biochemical cascade, which is a chain of biochemical events known as a signaling pathway.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.