L'analyse fractionnaire est une branche de l'analyse mathématique qui étudie la possibilité de définir des puissances non entières des opérateurs de dérivation et d'intégration. Ces dérivées ou intégrations fractionnaires entrent dans le cadre plus général des opérateurs pseudo-différentiels. Par exemple, on peut se demander comment interpréter convenablement la racine carrée de l'opérateur de dérivation, c'est-à-dire une expression d'un certain opérateur qui, lorsqu'elle est appliquée deux fois à une fonction, aura le même effet que la dérivation. Plus généralement, on peut examiner le problème de définir pour des valeurs réelles de α, de telle sorte que lorsque α prend une valeur entière n, on récupère la dérivation n-ième usuelle pour n > 0 ou l'intégration itérée n fois pour n < 0. Le terme « fractionnaire » est utilisé de façon impropre : α n'est pas nécessairement un nombre rationnel, et l'on devrait donc plutôt parler de dérivation non entière. Cependant, le terme « analyse fractionnaire » est devenu traditionnel. Les dérivées fractionnaires sont utilisées par exemple dans certains domaines de la physique faisant intervenir des phénomènes de diffusion comme l'électromagnétisme, l'acoustique ou la thermique, en définissant des opérateurs pseudo-différentiels diffusifs, avec conditions de bord à « géométrie fractale ». Les fondations de ce sujet ont été jetées par Liouville dans un article de 1832. La dérivée fractionnaire d'ordre α d'une fonction en un point x est désormais souvent définie à partir de la transformée de Fourier ou de la transformée de Laplace. Un point important est que la dérivée fractionnaire d'une fonction en un point x est une propriété locale seulement lorsque l'ordre α est entier ; dans les autres cas, on ne peut plus dire que la dérivée fractionnaire d'une fonction f en x ne dépend que du graphe de f au voisinage de x, comme c'est le cas en ce qui concerne les ordres de dérivation entiers. Pour illustrer ceci, introduisons l'opérateur « de translation » et l'opérateur identité .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (28)
Calcul différentiel : définition et dérivéabilité
Explore la définition et la dérivée des fonctions dans le calcul différentiel, en mettant laccent sur la différentiabilité à des points spécifiques.
Calcul différentiel : applications et rappels
Couvre les applications de calcul différentiel et les rappels, en soulignant l'importance de la différentiabilité dans l'analyse mathématique.
Méthode de récurrence: généralisation et calcul différentiel
Explore le principe fondamental de la méthode de récurrence et du calcul différentiel des fonctions de plusieurs variables.
Afficher plus
Publications associées (37)

Power variations in fractional Sobolev spaces for a class of parabolic stochastic PDEs

Robert Dalang, Carsten Hao Ye Chong

We consider a class of parabolic stochastic PDEs on bounded domains D c Rd that includes the stochastic heat equation but with a fractional power gamma of the Laplacian. Viewing the solution as a process with values in a scale of fractional Sobolev spaces ...
INT STATISTICAL INST2023

Local Nondeterminism and Local Times of the Stochastic Wave Equation Driven by Fractional-Colored Noise

Cheuk Yin Lee

We investigate the existence and regularity of the local times of the solution to a linear system of stochastic wave equations driven by a Gaussian noise that is fractional in time and colored in space. Using Fourier analytic methods, we establish strong l ...
SPRINGER BIRKHAUSER2022

Characterization of image spaces of Riemann-Liouville fractional integral operators on Sobolev spaces W-m,W-p (omega)

Jan Sickmann Hesthaven, Lijing Zhao

Fractional operators are widely used in mathematical models describing abnormal and nonlocal phenomena. Although there are extensive numerical methods for solving the corresponding model problems, theoretical analysis such as the regularity result, or the ...
SCIENCE PRESS2020
Afficher plus
Concepts associés (3)
Multiplicateur de Fourier
En théorie de Fourier, un multiplicateur est un type d'opérateur linéaire ou de transformation de fonctions. Ces opérateurs agissent sur une fonction en modifiant sa transformée de Fourier. Plus précisément, ils multiplient la transformée de Fourier d'une fonction par une fonction choisie connue sous le nom de multiplicateur ou symbole. Parfois, le terme opérateur multiplicateur lui-même est simplement abrégé en multiplicateur. En termes simples, le multiplicateur déforme les fréquences impliquées dans toute fonction.
Équation différentielle
En mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Composition de fonctions
La composition de fonctions (ou composition d’applications) est, en mathématiques, un procédé qui consiste, à partir de deux fonctions, à en construire une nouvelle. Pour cela, on utilise les images de la première fonction comme arguments pour la seconde (à condition que cela ait un sens). On parle alors de fonction composée (ou d'application composée). Soient X, Y et Z trois ensembles quelconques. Soient deux fonctions et . On définit la composée de f par g, notée , par On applique ici f à l'argument x, puis on applique g au résultat.
MOOCs associés (1)
Linear and Discrete Optimization
This advanced undergraduate course treats basic principles on linear programming like the simplex algorithm, its complexity, and duality. Furthermore it gives an introduction on discrete optimization

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.