Pretty Good Privacy (PGP) is an encryption program that provides cryptographic privacy and authentication for data communication. PGP is used for signing, encrypting, and decrypting texts, e-mails, files, directories, and whole disk partitions and to increase the security of e-mail communications. Phil Zimmermann developed PGP in 1991.
PGP and similar software follow the OpenPGP, an open standard of PGP encryption software, standard (RFC 4880) for encrypting and decrypting data. Modern versions of PGP are interoperable with GnuPG and other OpenPGP-compliant systems.
PGP encryption uses a serial combination of hashing, data compression, symmetric-key cryptography, and finally public-key cryptography; each step uses one of several supported algorithms. Each public key is bound to a username or an e-mail address. The first version of this system was generally known as a web of trust to contrast with the X.509 system, which uses a hierarchical approach based on certificate authority and which was added to PGP implementations later. Current versions of PGP encryption include options through an automated key management server.
A public key fingerprint is a shorter version of a public key. From a fingerprint, someone can validate the correct corresponding public key. A fingerprint like C3A6 5E46 7B54 77DF 3C4C 9790 4D22 B3CA 5B32 FF66 can be printed on a business card.
As PGP evolves, versions that support newer features and algorithms can create encrypted messages that older PGP systems cannot decrypt, even with a valid private key. Therefore, it is essential that partners in PGP communication understand each other's capabilities or at least agree on PGP settings.
PGP can be used to send messages confidentially. For this, PGP uses a hybrid cryptosystem by combining symmetric-key encryption and public-key encryption. The message is encrypted using a symmetric encryption algorithm, which requires a symmetric key generated by the sender. The symmetric key is used only once and is also called a session key.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
This is an introductory course to computer security and privacy. Its goal is to provide students with means to reason about security and privacy problems, and provide them with tools to confront them.
This advanced course will provide students with the knowledge to tackle the design of privacy-preserving ICT systems. Students will learn about existing technologies to prect privacy, and how to evalu
Explores the physical limits and security aspects of symmetric encryption schemes, including energy consumption, key recovery, and distinguisher security.
Cryptography, or cryptology (from κρυπτός "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others.
Government Communications Headquarters (GCHQ) is an intelligence and security organisation responsible for providing signals intelligence (SIGINT) and information assurance (IA) to the government and armed forces of the United Kingdom. Primarily based at "The Doughnut" in the suburbs of Cheltenham, GCHQ is the responsibility of the country's Secretary of State for Foreign and Commonwealth Affairs (Foreign Secretary), but it is not a part of the Foreign Office and its Director ranks as a Permanent Secretary.
Transport Layer Security (TLS) is a cryptographic protocol designed to provide communications security over a computer network. The protocol is widely used in applications such as email, instant messaging, and voice over IP, but its use in securing HTTPS remains the most publicly visible. The TLS protocol aims primarily to provide security, including privacy (confidentiality), integrity, and authenticity through the use of cryptography, such as the use of certificates, between two or more communicating computer applications.
Since the advent of internet and mass communication, two public-key cryptographic algorithms have shared the monopoly of data encryption and authentication: Diffie-Hellman and RSA. However, in the last few years, progress made in quantum physics -- and mor ...
EPFL2024
, , ,
This paper introduces protocols for authenticated private information retrieval. These schemes enable a client to fetch a record from a remote database server such that (a) the server does not learn which record the client reads, and (b) the client either ...
Berkeley2023
, , , , ,
A method for aggregating digital signatures comprises the following steps carried out by a signature aggregator: receiving first data packages from signers, each first data package comprising a signer identifier, a payload, and a payload signature; verifyi ...