Transport Layer Security (TLS) is a cryptographic protocol designed to provide communications security over a computer network. The protocol is widely used in applications such as email, instant messaging, and voice over IP, but its use in securing HTTPS remains the most publicly visible.
The TLS protocol aims primarily to provide security, including privacy (confidentiality), integrity, and authenticity through the use of cryptography, such as the use of certificates, between two or more communicating computer applications. It runs in the presentation layer and is itself composed of two layers: the TLS record and the TLS handshake protocols.
The closely related Datagram Transport Layer Security (DTLS) is a communications protocol that provides security to datagram-based applications. In technical writing, references to "(D)TLS" are often seen when it applies to both versions.
TLS is a proposed Internet Engineering Task Force (IETF) standard, first defined in 1999, and the current version is TLS 1.3, defined in August 2018. TLS builds on the now-deprecated SSL (Secure Sockets Layer) specifications (1994, 1995, 1996) developed by Netscape Communications for adding the HTTPS protocol to their Navigator web browser.
Client-server applications use the TLS protocol to communicate across a network in a way designed to prevent eavesdropping and tampering.
Since applications can communicate either with or without TLS (or SSL), it is necessary for the client to request that the server set up a TLS connection. One of the main ways of achieving this is to use a different port number for TLS connections. Port 80 is typically used for unencrypted HTTP traffic while port 443 is the common port used for encrypted HTTPS traffic. Another mechanism is to make a protocol-specific STARTTLS request to the server to switch the connection to TLS – for example, when using the mail and news protocols.
Once the client and server have agreed to use TLS, they negotiate a stateful connection by using a handshaking procedure (see ).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides an introduction to computer networks. It describes the principles that underly modern network operation and illustrates them using the Internet as an example.
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
La modélisation numérique des solides est abordée à travers la méthode des éléments finis. Les aspects purement analytiques sont d'abord présentés, puis les moyens d'interpolation, d'intégration et de
In cryptography, an initialization vector (IV) or starting variable is an input to a cryptographic primitive being used to provide the initial state. The IV is typically required to be random or pseudorandom, but sometimes an IV only needs to be unpredictable or unique. Randomization is crucial for some encryption schemes to achieve semantic security, a property whereby repeated usage of the scheme under the same key does not allow an attacker to infer relationships between (potentially similar) segments of the encrypted message.
Kerberos (ˈkɜːrbərɒs) is a computer-network authentication protocol that works on the basis of tickets to allow nodes communicating over a non-secure network to prove their identity to one another in a secure manner. Its designers aimed it primarily at a client–server model, and it provides mutual authentication—both the user and the server verify each other's identity. Kerberos protocol messages are protected against eavesdropping and replay attacks.
Cryptography, or cryptology (from κρυπτός "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others.
Billions of people now have conversations daily over the Internet. A large portion of this communication takes place via secure messaging protocols that offer "end-to-end encryption'" guarantees and resilience to compromise like the widely-used Double Ratc ...
EPFL2024
, , , ,
Decentralized learning is appealing as it enables the scalable usage of large amounts of distributed data and resources (without resorting to any central entity), while promoting privacy since every user minimizes the direct exposure of their data. Yet, wi ...
In this paper we characterize all 2n-bit-to-n-bit Pseudorandom Functions (PRFs) constructed with the minimum number of calls to n-bit-to-n-bit PRFs and arbitrary number of linear functions. First, we show that all two-round constructions are either classic ...