Concept

Phi coefficient

Summary
In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or rφ) is a measure of association for two binary variables. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975. Introduced by Karl Pearson, and also known as the Yule phi coefficient from its introduction by Udny Yule in 1912 this measure is similar to the Pearson correlation coefficient in its interpretation. In fact, a Pearson correlation coefficient estimated for two binary variables will return the phi coefficient. Two binary variables are considered positively associated if most of the data falls along the diagonal cells. In contrast, two binary variables are considered negatively associated if most of the data falls off the diagonal. If we have a 2×2 table for two random variables x and y where n11, n10, n01, n00, are non-negative counts of numbers of observations that sum to n, the total number of observations. The phi coefficient that describes the association of x and y is Phi is related to the point-biserial correlation coefficient and Cohen's d and estimates the extent of the relationship between two variables (2×2). The phi coefficient can also be expressed using only , , , and , as Although computationally the Pearson correlation coefficient reduces to the phi coefficient in the 2×2 case, they are not in general the same. The Pearson correlation coefficient ranges from −1 to +1, where ±1 indicates perfect agreement or disagreement, and 0 indicates no relationship. The phi coefficient has a maximum value that is determined by the distribution of the two variables if one or both variables can take on more than two values. See Davenport and El-Sanhury (1991) for a thorough discussion. The MCC is defined identically to phi coefficient, introduced by Karl Pearson, also known as the Yule phi coefficient from its introduction by Udny Yule in 1912.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.