Summary
In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Written as a formula:. Recall (also known as sensitivity) is the fraction of relevant instances that were retrieved. Written as a formula: . Both precision and recall are therefore based on relevance. Consider a computer program for recognizing dogs (the relevant element) in a digital photograph. Upon processing a picture which contains ten cats and twelve dogs, the program identifies eight dogs. Of the eight elements identified as dogs, only five actually are dogs (true positives), while the other three are cats (false positives). Seven dogs were missed (false negatives), and seven cats were correctly excluded (true negatives). The program's precision is then 5/8 (true positives / selected elements) while its recall is 5/12 (true positives / relevant elements). Adopting a hypothesis-testing approach from statistics, in which, in this case, the null hypothesis is that a given item is irrelevant (i.e., not a dog), absence of type I and type II errors (i.e., perfect specificity and sensitivity of 100% each) corresponds respectively to perfect precision (no false positive) and perfect recall (no false negative). More generally, recall is simply the complement of the type II error rate (i.e., one minus the type II error rate). Precision is related to the type I error rate, but in a slightly more complicated way, as it also depends upon the prior distribution of seeing a relevant vs. an irrelevant item. The above cat and dog example contained 8 − 5 = 3 type I errors (false positives) out of 10 total cats (true negatives), for a type I error rate of 3/10, and 12 − 5 = 7 type II errors, for a type II error rate of 7/12. Precision can be seen as a measure of quality, and recall as a measure of quantity.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
EE-612: Fundamentals in statistical pattern recognition
This course provides in-depth understanding of the most fundamental algorithms in statistical pattern recognition or machine learning (including Deep Learning) as well as concrete tools (as Python sou
CS-423: Distributed information systems
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Show more
Related lectures (109)
Hydraulic Transients of Turbines: Hydroacoustic Modeling
Explores hydraulic turbine modeling, stability, and historical development, emphasizing the selection criteria for Francis turbines.
Probabilistic Retrieval Models
Covers probabilistic retrieval models, evaluation metrics, query likelihood, user relevance feedback, and query expansion.
Characterizing Fibrations in Chain Complexes
Explores the characterization of fibrations and acyclic fibrations in chain complexes.
Show more