An air compressor is a machine that takes ambient air from the surroundings and discharges it at a higher pressure. It is an application of a gas compressor and a pneumatic device that converts mechanical power (from an electric motor, diesel or gasoline engine, etc.) into potential energy stored in compressed air, which has many uses. A common application is to compress air into a storage tank, for immediate or later use. When the delivery pressure reaches its set upper limit, the compressor is shut off, or the excess air is released through an overpressure valve. The compressed air is stored in the tank until it is needed. The pressure energy provided by the compressed air can be used for a variety of applications such as pneumatic tools as it is released. When tank pressure reaches its lower limit, the air compressor turns on again and re-pressurizes the tank.
A compressor is different from a pump because it works on a gas, while pumps work on a liquid.
Compressors may be classified according to the pressure delivered:
Low-pressure air compressors (LPACs), which have a discharge pressure of or less
Medium-pressure compressors which have a discharge pressure of
High-pressure air compressors (HPACs), which have a discharge pressure above
There are numerous methods of air compression, divided into either positive-displacement or roto-dynamic types.
Single-stage reciprocating compressor
Multi-stage reciprocating compressor
Compound compressor
Single stage rotary-screw compressor
Two-stage rotary screw compressor
Rotary vane pump
Scroll compressor
Centrifugal (roto-dynamic or turbo) compressor
Axial compressor, often used in jet engines.
Another way of classification, is by lubrication type: oil lubricated and oil-free. The oil-less (or oil-free) system has more technical development such as they do not require oil for lubrication. oil-less air compressors are also lighter and more portable than oil-lubricated models but require more maintenance. On other side Oil-lubricated air compressors are the more traditional type of air compressor.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
Through a project, this course will introduce the critical steps in developing a chemical process in the context of industry decarbonisation, from the lab to industrial scale.
Explores gas refrigeration systems, including Brayton cycles and heat pumps, discussing principles, performance, and optimization approaches.
Explores the role of compressors in heat pump cycles and compares positive displacement with dynamic compressors.
Discusses compressor efficiency, temperature, and pressure in a heat pump system, emphasizing accuracy and specifications.
Compressed air is air kept under a pressure that is greater than atmospheric pressure. Compressed air is an important medium for transfer of energy in industrial processes, and is used for power tools such as air hammers, drills, wrenches, and others, as well as to atomize paint, to operate air cylinders for automation, and can also be used to propel vehicles. Brakes applied by compressed air made large railway trains safer and more efficient to operate. Compressed air brakes are also found on large highway vehicles.
A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor. Compressors are similar to pumps: both increase the pressure on a fluid and both can transport the fluid through a pipe. The main distinction is that the focus of a compressor is to change the density or volume of the fluid, which is mostly only achievable on gases. Gases are compressible, while liquids are relatively incompressible, so compressors are rarely used for liquids.
Pneumatics (from Greek πνεῦμα ‘wind, breath’) is a branch of engineering that makes use of gas or pressurized air. Pneumatic systems used in industry are commonly powered by compressed air or compressed inert gases. A centrally located and electrically-powered compressor powers cylinders, air motors, pneumatic actuators, and other pneumatic devices. A pneumatic system controlled through manual or automatic solenoid valves is selected when it provides a lower cost, more flexible, or safer alternative to electric motors, and hydraulic actuators.
A new electrically driven gas booster is described as an alternative to the classical air-driven gas boosters known for their poor energetic efficiency. These boosters are used in small scale Hydrogen storage facilities and in refueling stations for Hydrog ...
MDPI2023
This paper describes an investigation of the aerodynamic performance of a Hyperloop pod equipped with an axial compressor using CFD simulation. The compressor is expected to reduce the drag if the operational speed of the pod exceeds the Kantrowitz Limit ( ...
A compressed air driven generator is proposed, where the pneumatic energy is converted into mechanical energy using two vane-type rotational actuators. The use of a second actuator with a higher displacement in order to produce a thermodynamic expansion al ...