Gene mapping or genome mapping describes the methods used to identify the location of a gene on a chromosome and the distances between genes. Gene mapping can also describe the distances between different sites within a gene. The essence of all genome mapping is to place a collection of molecular markers onto their respective positions on the genome. Molecular markers come in all forms. Genes can be viewed as one special type of genetic markers in the construction of genome maps, and mapped the same way as any other markers. In some areas of study, gene mapping contributes to the creation of new recombinants within an organism. Gene maps help describe the spatial arrangement of genes on a chromosome. Genes are designated to a specific location on a chromosome known as the locus and can be used as molecular markers to find the distance between other genes on a chromosome. Maps provide researchers with the opportunity to predict the inheritance patterns of specific traits, which can eventually lead to a better understanding of disease-linked traits. The genetic basis to gene maps is to provide an outline that can potentially help researchers carry out DNA sequencing. A gene map helps point out the relative positions of genes and allows researchers to locate regions of interest in the genome. Genes can then be identified quickly and sequenced quickly. Two approaches to generating gene maps (gene mapping) include physical mapping and genetic mapping. Physical mapping utilizes molecular biology techniques to inspect chromosomes. These techniques consequently allow researchers to observe chromosomes directly so that a map may be constructed with relative gene positions. Genetic mapping on the other hand uses genetic techniques to indirectly find association between genes. Techniques can include cross-breeding (hybrid) experiments and examining pedigrees. These technique allow for maps to be constructed so that relative positions of genes and other important sequences can be analyzed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
ENV-621: Hands-on bioinformatics for microbial meta-omics
This course will train doctoral students to use bioinformatic tools to analyse amplicon and metagenomic sequences. In addition, we will also touch upon meta-transcriptomics and meta-proteomics.
BIO-693: Bioinformatic Analysis of RNA-sequencing
This course will take place from 2nd to 6th June 2025 in room AAC 1 37. It introduces the workflows and techniques that are used for the analysis of bulk and single-cell RNA-seq data. It empowers stu
BIO-603(LG): Practical - LaManno Lab
Give students a feel for how single-cell genomics datasets are analyzed from raw data to data interpretation. Different steps of the analysis will be demonstrated and the most common statistical and b
Show more
Related publications (32)

Identifying genetic and dietary modulators of metabolic disorders using systems genetics

Xiaoxu Li

Long-term consumption of lipid-rich foods can contribute to common metabolic diseases and systemic low-grade inflammation. However, dietary responses and the development of non-communicable diseases are shaped by genetic factors and gene-by-environment int ...
EPFL2023

Prioritization of cell types responsive to biological perturbations in single-cell data with Augur

Grégoire Courtine, Jordan Squair, Matthieu Pierre Gautier, Michael Alexander Skinnider

Advances in single-cell genomics now enable large-scale comparisons of cell states across two or more experimental conditions. Numerous statistical tools are available to identify individual genes, proteins or chromatin regions that differ between conditio ...
NATURE RESEARCH2021
Show more
Related people (1)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.