In network theory, a giant component is a connected component of a given random graph that contains a significant fraction of the entire graph's vertices. More precisely, in graphs drawn randomly from a probability distribution over arbitrarily large graphs, a giant component is a connected component whose fraction of the overall number of vertices is bounded away from zero. In sufficiently dense graphs distributed according to the Erdős–Rényi model, a giant component exists with high probability. Giant components are a prominent feature of the Erdős–Rényi model (ER) of random graphs, in which each possible edge connecting pairs of a given set of n vertices is present, independently of the other edges, with probability p. In this model, if for any constant , then with high probability (in the limit as goes to infinity) all connected components of the graph have size O(log n), and there is no giant component. However, for there is with high probability a single giant component, with all other components having size O(log n). For , intermediate between these two possibilities, the number of vertices in the largest component of the graph, is with high probability proportional to . Giant component is also important in percolation theory. When a fraction of nodes, , is removed randomly from an ER network of degree , there exists a critical threshold, . Above there exists a giant component (largest cluster) of size, . fulfills, . For the solution of this equation is , i.e., there is no giant component. At , the distribution of cluster sizes behaves as a power law, ~ which is a feature of phase transition. Alternatively, if one adds randomly selected edges one at a time, starting with an empty graph, then it is not until approximately edges have been added that the graph contains a large component, and soon after that the component becomes giant. More precisely, when t edges have been added, for values of t close to but larger than , the size of the giant component is approximately .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (27)
Concepts associés (7)
Science des réseaux
vignette|Les liens de la network science La Science des Réseaux, ou Network Science, est une discipline scientifique émergente qui se donne pour objet l'étude des relations, liens et interconnexions entre les choses, et non les choses en elles-mêmes. Champ interdisciplinaire de recherche, elle s'applique en physique, biologie, épidémiologie, science de l'information, science cognitive et réseaux sociaux. Elle vise à découvrir des propriétés communes au comportement de ces réseaux hétérogènes via la construction d'algorithmes et d'outils.
Percolation
vignette|Schéma de l'hydrosystème karstique : infiltrations dans le sol et la roche. La percolation (du latin percolare, « filtrer », « passer au travers ») désigne communément le passage d'un fluide à travers un milieu poreux ou fissuré plus ou moins perméable. Un exemple de la vie courante est celui de l'écoulement de l'eau au travers de la poudre de café moulu contenu dans le filtre d'une machine à café (d'où le nom de percolateur).
Percolation threshold
The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.