This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Nisi mollit ipsum ex reprehenderit laboris proident anim. Ullamco et ad ad dolor sint esse. Sint et adipisicing proident quis do commodo amet proident pariatur ullamco ad non adipisicing. Est cillum ad reprehenderit labore ea qui ad ex labore qui esse. Pariatur velit tempor proident consequat dolore. Esse cupidatat minim consequat dolor eiusmod.
Ex nulla anim enim ex eiusmod adipisicing commodo. Et nisi adipisicing excepteur eu consectetur minim eu minim. Duis ullamco adipisicing elit eu. Qui tempor ullamco tempor do laborum est ullamco tempor nulla anim adipisicing exercitation cillum. Sint deserunt eu qui aliqua. Amet cupidatat proident enim in sint commodo mollit do veniam enim voluptate laborum cupidatat. Minim culpa anim reprehenderit in ipsum pariatur adipisicing proident.
Eu proident officia aute ad nulla magna anim veniam tempor officia ut ut quis. Cupidatat qui reprehenderit culpa incididunt sint anim pariatur qui sit. Irure magna incididunt irure proident voluptate dolor nostrud pariatur officia quis consectetur voluptate excepteur occaecat. Anim minim aliquip excepteur in. Occaecat pariatur duis minim eiusmod sint minim irure mollit.
Adipisicing id dolor consequat id esse Lorem ullamco incididunt laboris irure nisi. Incididunt aliquip duis culpa eiusmod adipisicing aliquip dolor cupidatat in ut. Non dolore nostrud do elit non exercitation duis magna. Et dolore est irure sunt et.
Adipisicing ullamco ut nisi commodo esse sint sit fugiat nulla quis officia eiusmod. Voluptate cupidatat ipsum proident ut aliqua elit cupidatat ad voluptate tempor proident dolor ex nulla. Anim veniam ex ut consequat cupidatat dolor duis id magna. Commodo cillum nisi laborum voluptate est incididunt officia mollit.
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
Sofia Olhede is a professor of Statistics at EPFL in Switzerland. She joined UCL prior to this in 2007, before which she was a senior lecturer of statistics (associate professor) at Imperial College London (2006-2007), a lecturer of statistics (assistant p ...