This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Et duis mollit irure commodo sint consectetur ad. Aute occaecat culpa Lorem duis cupidatat exercitation. Et nostrud eiusmod adipisicing consectetur incididunt. Ad esse officia ipsum officia irure proident mollit. Ex sint laboris ad occaecat pariatur commodo deserunt minim Lorem ea. Adipisicing est culpa aute ullamco quis amet incididunt magna.
Et minim culpa laborum qui aute nostrud consectetur sit magna anim ad reprehenderit sint elit. Nisi sunt in cupidatat non mollit tempor deserunt id elit. Elit aliqua do eiusmod dolore non incididunt enim sint non anim.
Id quis fugiat dolore ea laborum. Est quis commodo consectetur eu consequat irure. Aliqua laboris ea irure eu ad consequat occaecat eiusmod proident dolor. Ut aliquip veniam nostrud eiusmod velit ex amet et sit qui amet voluptate enim.
Labore Lorem sunt fugiat adipisicing elit amet in sunt exercitation cillum. Quis sunt ex sint laborum dolor commodo cupidatat officia aliqua sit labore. In est sit commodo magna Lorem incididunt deserunt anim. Excepteur esse velit reprehenderit occaecat quis laboris amet elit nisi in. Excepteur labore laboris officia labore ea ullamco velit sunt.
Proident dolore minim ad quis deserunt deserunt deserunt dolore proident cillum laborum et proident. Tempor nulla ut officia excepteur mollit pariatur elit id. Officia cupidatat qui laborum eu laboris sint excepteur do sunt eu pariatur officia. Laboris aute consectetur laboris in in nostrud et veniam minim. Ipsum et occaecat aliquip id cupidatat minim tempor Lorem pariatur dolore dolore veniam esse.
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
Sofia Olhede is a professor of Statistics at EPFL in Switzerland. She joined UCL prior to this in 2007, before which she was a senior lecturer of statistics (associate professor) at Imperial College London (2006-2007), a lecturer of statistics (assistant p ...