In mathematics, the rational normal curve is a smooth, rational curve C of degree n in projective n-space Pn. It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For n = 2 it is the plane conic Z0Z2 = Z, and for n = 3 it is the twisted cubic. The term "normal" refers to projective normality, not normal schemes. The intersection of the rational normal curve with an affine space is called the moment curve.
The rational normal curve may be given parametrically as the image of the map
which assigns to the homogeneous coordinates [S : T] the value
In the affine coordinates of the chart x0 ≠ 0 the map is simply
That is, the rational normal curve is the closure by a single point at infinity of the affine curve
Equivalently, rational normal curve may be understood to be a projective variety, defined as the common zero locus of the homogeneous polynomials
where are the homogeneous coordinates on Pn. The full set of these polynomials is not needed; it is sufficient to pick n of these to specify the curve.
Let be n + 1 distinct points in P1. Then the polynomial
is a homogeneous polynomial of degree n + 1 with distinct roots. The polynomials
are then a basis for the space of homogeneous polynomials of degree n. The map
or, equivalently, dividing by G(S, T)
is a rational normal curve. That this is a rational normal curve may be understood by noting that the monomials
are just one possible basis for the space of degree n homogeneous polynomials. In fact, any basis will do. This is just an application of the statement that any two projective varieties are projectively equivalent if they are congruent modulo the projective linear group PGLn + 1(K) (with K the field over which the projective space is defined).
This rational curve sends the zeros of G to each of the coordinate points of Pn; that is, all but one of the Hi vanish for a zero of G. Conversely, any rational normal curve passing through the n + 1 coordinate points may be written parametrically in this way.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
In algebraic geometry, the homogeneous coordinate ring R of an algebraic variety V given as a subvariety of projective space of a given dimension N is by definition the quotient ring R = K[X0, X1, X2, ..., XN] / I where I is the homogeneous ideal defining V, K is the algebraically closed field over which V is defined, and K[X0, X1, X2, ..., XN] is the polynomial ring in N + 1 variables Xi. The polynomial ring is therefore the homogeneous coordinate ring of the projective space itself, and the variables are the homogeneous coordinates, for a given choice of basis (in the vector space underlying the projective space).
In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus g > 1, given by an equation of the form where f(x) is a polynomial of degree n = 2g + 1 > 4 or n = 2g + 2 > 4 with n distinct roots, and h(x) is a polynomial of degree < g + 2 (if the characteristic of the ground field is not 2, one can take h(x) = 0). A hyperelliptic function is an element of the function field of such a curve, or of the Jacobian variety on the curve; these two concepts are identical for elliptic functions, but different for hyperelliptic functions.
In mathematics, a twisted cubic is a smooth, rational curve C of degree three in projective 3-space P3. It is a fundamental example of a skew curve. It is essentially unique, up to projective transformation (the twisted cubic, therefore). In algebraic geometry, the twisted cubic is a simple example of a projective variety that is not linear or a hypersurface, in fact not a complete intersection. It is the three-dimensional case of the rational normal curve, and is the of a Veronese map of degree three on the projective line.
It is generally assumed that the parent-twin interface is a fully invariant plane. The calculations of the rational interfaces of the type I twins and irrational interfaces of the type II twins are based on this hypothesis. Recently, some asymmetric facets ...
We give a characterization of rational points lying on the Noether-Lefschetz locus of moduli spaces of K3 surfaces by studying their lifting properties under some natural coverings of the ambient space. We then prove that the Bombieri-Lang conjecture impli ...
We use birational geometry to show that the existence of rational points on proper rationally connected varieties over fields of characteristic 0 is a consequence of the existence of rational points on terminal Fano varieties. We discuss several consequenc ...