**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# On rationally connected varieties over C1 fields of characteristic 0

Abstract

We use birational geometry to show that the existence of rational points on proper rationally connected varieties over fields of characteristic 0 is a consequence of the existence of rational points on terminal Fano varieties. We discuss several consequences of this result, especially in relation to the C1-conjecture. We also provide evidence that supports the conjecture in dimension 3 for C1 fields of characteristic 0.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (37)

Related concepts (35)

Ontological neighbourhood

Birational geometry

In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles. A rational map from one variety (understood to be irreducible) to another variety , written as a dashed arrow X Y, is defined as a morphism from a nonempty open subset to .

Rational point

In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point. Understanding rational points is a central goal of number theory and Diophantine geometry. For example, Fermat's Last Theorem may be restated as: for n > 2, the Fermat curve of equation has no other rational points than (1, 0), (0, 1), and, if n is even, (–1, 0) and (0, –1).

Rational variety

In mathematics, a rational variety is an algebraic variety, over a given field K, which is birationally equivalent to a projective space of some dimension over K. This means that its function field is isomorphic to the field of all rational functions for some set of indeterminates, where d is the dimension of the variety. Let V be an affine algebraic variety of dimension d defined by a prime ideal I = ⟨f1, ..., fk⟩ in . If V is rational, then there are n + 1 polynomials g0, ..., gn in such that In order words, we have a of the variety.

Zsolt Patakfalvi, Joseph Allen Waldron

We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global F-regularity to mixed characteristic and identify certain stable sections of adjoint lin ...

Stefano Filipazzi, Fabio Bernasconi

We show that mixed-characteristic and equicharacteristic small deformations of 3-dimensional canonical (resp., terminal) singularities with perfect residue field of characteristic p>5 are canonical (resp., terminal). We discuss applications to arithmetic a ...

We give a characterization of rational points lying on the Noether-Lefschetz locus of moduli spaces of K3 surfaces by studying their lifting properties under some natural coverings of the ambient space. We then prove that the Bombieri-Lang conjecture impli ...