Concept

Gnetophyta

Summary
Gnetophyta (nɛˈtɒfᵻtə,_ˈnɛtoʊfaɪtə) is a division of plants (alternatively considered the subclass Gnetidae or order Gnetales), grouped within the gymnosperms (which also includes conifers, cycads, and ginkgos), that consists of some 70 species across the three relict genera: Gnetum (family Gnetaceae), Welwitschia (family Welwitschiaceae), and Ephedra (family Ephedraceae). Fossilized pollen attributed to a close relative of Ephedra has been dated as far back as the Early Cretaceous. Though diverse in the Early Cretaceous, only three families, each containing a single genus, are still alive today. The primary difference between gnetophytes and other gymnosperms is the presence of vessel elements, a system of small tubes (xylem) that transport water within the plant, similar to those found in flowering plants. Because of this, gnetophytes were once thought to be the closest gymnosperm relatives to flowering plants, but more recent molecular studies have brought this hypothesis into question, with many recent phylogenies finding them to be nested within the conifers. Though it is clear they are all related, the exact evolutionary inter-relationships between gnetophytes are unclear. Some classifications hold that all three genera should be placed in a single order (Gnetales), while other classifications say they should be distributed among three separate orders, each containing a single family and genus. Most morphological and molecular studies confirm that the genera Gnetum and Welwitschia diverged from each other more recently than they did from Ephedra. Unlike most biological groupings, it is difficult to find many common characteristics between all of the members of the gnetophytes. The two common characteristics most commonly used are the presence of enveloping bracts around both the ovules and microsporangia as well as a micropylar projection of the outer membrane of the ovule that produces a pollination droplet, though these are highly specific compared to the similarities between most other plant divisions. L.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (1)
MSE-466: Wood structures, properties and uses
The presentation of tree growth and formation of wood anatomical structures, linked to the description of specific physical and mechanical properties, makes it possible to understand the different for