Vector autoregression (VAR) is a statistical model used to capture the relationship between multiple quantities as they change over time. VAR is a type of stochastic process model. VAR models generalize the single-variable (univariate) autoregressive model by allowing for multivariate time series. VAR models are often used in economics and the natural sciences.
Like the autoregressive model, each variable has an equation modelling its evolution over time. This equation includes the variable's lagged (past) values, the lagged values of the other variables in the model, and an error term. VAR models do not require as much knowledge about the forces influencing a variable as do structural models with simultaneous equations. The only prior knowledge required is a list of variables which can be hypothesized to affect each other over time.
A VAR model describes the evolution of a set of k variables, called endogenous variables, over time. Each period of time is numbered, t = 1, ..., T. The variables are collected in a vector, yt, which is of length k. (Equivalently, this vector might be described as a (k × 1)-matrix.) The vector is modelled as a linear function of its previous value. The vector's components are referred to as yi,t, meaning the observation at time t of the i th variable. For example, if the first variable in the model measures the price of wheat over time, then y1,1998 would indicate the price of wheat in the year 1998.
VAR models are characterized by their order, which refers to the number of earlier time periods the model will use. Continuing the above example, a 5th-order VAR would model each year's wheat price as a linear combination of the last five years of wheat prices. A lag is the value of a variable in a previous time period. So in general a pth-order VAR refers to a VAR model which includes lags for the last p time periods. A pth-order VAR is denoted "VAR(p)" and sometimes called "a VAR with p lags". A pth-order VAR model is written as
The variables of the form yt−i indicate that variable's value i time periods earlier and are called the "ith lag" of yt.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In time series analysis, the lag operator (L) or backshift operator (B) operates on an element of a time series to produce the previous element. For example, given some time series then for all or similarly in terms of the backshift operator B: for all . Equivalently, this definition can be represented as for all The lag operator (as well as backshift operator) can be raised to arbitrary integer powers so that and Polynomials of the lag operator can be used, and this is a common notation for ARMA (autoregressive moving average) models.
The Granger causality test is a statistical hypothesis test for determining whether one time series is useful in forecasting another, first proposed in 1969. Ordinarily, regressions reflect "mere" correlations, but Clive Granger argued that causality in economics could be tested for by measuring the ability to predict the future values of a time series using prior values of another time series.
Cointegration is a statistical property of a collection (X1, X2, ..., Xk) of time series variables. First, all of the series must be integrated of order d (see Order of integration). Next, if a linear combination of this collection is integrated of order less than d, then the collection is said to be co-integrated. Formally, if (X,Y,Z) are each integrated of order d, and there exist coefficients a,b,c such that aX + bY + cZ is integrated of order less than d, then X, Y, and Z are cointegrated.
This course aims to give an introduction to the application of machine learning to finance. These techniques gained popularity due to the limitations of traditional financial econometrics methods tack
We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of Double-struck capital R. An order-1 autoregressive model in this context is to be understood as a Markov chain, where ...
Hoboken2024
, ,
Efficient sampling and approximation of Boltzmann distributions involving large sets of binary variables, or spins, are pivotal in diverse scientific fields even beyond physics. Recent advances in generative neural networks have significantly impacted this ...
Iop Publishing Ltd2024
This study compares three imputation methods applied to the field observations of hydraulic head in subsurface hydrology. Hydrogeological studies that analyze the timeseries of groundwater elevations often face issues with missing data that may mislead bot ...