Summary
In chemistry, a hydration reaction is a chemical reaction in which a substance combines with water. In organic chemistry, water is added to an unsaturated substrate, which is usually an alkene or an alkyne. This type of reaction is employed industrially to produce ethanol, isopropanol, and butan-2-ol. Several million tons of ethylene glycol are produced annually by the hydration of oxirane, a cyclic compound also known as ethylene oxide: C2H4O + H2O → HO–CH2CH2–OH Acid catalysts are typically used. For the hydration of alkenes, the general chemical equation of the reaction is the following: RRC=CH2 + H2O → RRC(OH)-CH3 A hydroxyl group (OH−) attaches to one carbon of the double bond, and a proton (H+) adds to the other. The reaction is highly exothermic. In the first step, the alkene acts as a nucleophile and attacks the proton, following Markovnikov's rule. In the second step an H2O molecule bonds to the other, more highly substituted carbon. The oxygen atom at this point has three bonds and carries a positive charge (i.e., the molecule is an oxonium). Another water molecule comes along and takes up the extra proton. This reaction tends to yield many undesirable side products, (for example diethyl ether in the process of creating ethanol) and in its simple form described here is not considered very useful for the production of alcohol. Two approaches are taken. Traditionally the alkene is treated with sulfuric acid to give alkyl sulphate esters. In the case of ethanol production, this step can be written: H2SO4 + C2H4 → C2H5-O-SO3H Subsequently, this sulphate ester is hydrolyzed to regenerate sulphuric acid and release ethanol: C2H5-O-SO3H + H2O → H2SO4 + C2H5OH This two step route is called the "indirect process". In the "direct process," the acid protonates the alkene, and water reacts with this incipient carbocation to give the alcohol. The direct process is more popular because it is simpler. The acid catalysts include phosphoric acid and several solid acids.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
CH-233: Organic functions and reactions I
Le cours se focalisera sur les composés carbonyles: leur structures, réactivités, et leurs transformations; la réactivité des énols/énolates et leurs réactions fondamentales. L'importance de la compré
CH-492: Project in molecular sciences Ia
Short research project within one of our laboratories in chemistry at SCGC.
MSE-322: Building materials + Laboratory work
Science des matériaux de construction non métalliques les plus utilisés et plus particulièrement des matériaux cimentaires (béton). Composition chimique, fabrication et comportement sur la durée.
Show more