Concept

Principle of bivalence

Summary
In logic, the semantic principle (or law) of bivalence states that every declarative sentence expressing a proposition (of a theory under inspection) has exactly one truth value, either true or false. A logic satisfying this principle is called a two-valued logic or bivalent logic. In formal logic, the principle of bivalence becomes a property that a semantics may or may not possess. It is not the same as the law of excluded middle, however, and a semantics may satisfy that law without being bivalent. The principle of bivalence is studied in philosophical logic to address the question of which natural-language statements have a well-defined truth value. Sentences that predict events in the future, and sentences that seem open to interpretation, are particularly difficult for philosophers who hold that the principle of bivalence applies to all declarative natural-language statements. Many-valued logics formalize ideas that a realistic characterization of the notion of consequence requires the admissibility of premises that, owing to vagueness, temporal or quantum indeterminacy, or reference-failure, cannot be considered classically bivalent. Reference failures can also be addressed by free logics. The principle of bivalence is related to the law of excluded middle though the latter is a syntactic expression of the language of a logic of the form "P ∨ ¬P". The difference between the principle of bivalence and the law of excluded middle is important because there are logics that validate the law but not the principle. For example, the three-valued Logic of Paradox (LP) validates the law of excluded middle, but not the law of non-contradiction, ¬(P ∧ ¬P), and its intended semantics is not bivalent. Intuitionistic logic is a two-valued logic but the law of excluded middle does not hold. In classical two-valued logic both the law of excluded middle and the law of non-contradiction hold. The intended semantics of classical logic is bivalent, but this is not true of every semantics for classical logic.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.