Le principe de bivalence est un principe de logique selon lequel toute proposition p ne peut avoir qu'une seule des deux valeurs de vérité. Elle est soit vraie, soit fausse. Une logique respectant le principe de bivalence est dite logique bivalente. La logique classique est bivalente. Le principe de bivalence énonce que quelque chose est soit vrai, soit faux. Quelle que soit la proposition p, p est soit vraie, soit fausse. Le principe de bivalence rend les deux valeurs de vérité que sont le vrai et le faux conjointement exhaustifs. En vertu du principe de bivalence, la disjonction d'une proposition et de sa négation couvre le champ de la vérité de manière exhaustive. La bivalence est une propriété qu'une théorie logique peut ou non posséder. Le principe du tiers exclu doit être distingué du principe de bivalence. Une théorie logique peut respecter le principe du tiers exclu sans être bivalente. En réalité, le principe de bivalence est beaucoup plus fort car il énonce trois choses, qui se comprennent mieux si on l'énonce en termes mathématiques : application : c'est le principe du tiers exclu. univoque : c'est le principe de non-contradiction. dans un ensemble image de cardinalité 2 : c'est la bivalence proprement dite. Il est assez regrettable que ce principe ne s'en tienne pas à cette dernière propriété. Il s'agit là plus d'une considération philosophique ; le principe n'est guère formulé en logique mathématique et sa formalisation peut fluctuer selon l'approche logique que l'on adopte. Le principe de bivalence est donc étudié en logique philosophique pour répondre au problème de savoir quelles assertions ont une valeur de vérité bien définie. En particulier, les propositions portant sur des événements futurs, ou les propositions ouvertes à interprétation, posent des difficultés aux philosophes soutenant le principe de bivalence. Des logiques polyvalentes ont été inventées, notamment pour admettre la possibilité de proposition indéterminée, que l'indétermination soit temporelle (logique temporelle), quantique (logique quantique) ou due au caractère vague de la proposition (logique floue).
Mikhail Kapralov, Mikhail Makarov, Jakab Tardos
Olivier Schneider, Mingkui Wang, Chao Wang, Tagir Aushev, Sun Hee Kim, Jun Yong Kim, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Xiao Wang
Jian Wang, Matthias Finger, Lesya Shchutska, Qian Wang, Matthias Wolf, Varun Sharma, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Mingkui Wang, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Thomas Muller, Ho Ling Li, Giuseppe Codispoti, Hua Zhang, Siyuan Wang, Peter Hansen, Daniel Gonzalez, Tao Huang, David Vannerom, Michele Bianco, Kun Shi, Wei Shi, Abhisek Datta, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Vladimir Petrov, Francesco Fiori, Quentin Python, Meng Xiao, Hao Liu, Sourav Sen, Viktor Khristenko, Marco Trovato, Gurpreet Singh, Fan Xia, Xiao Wang, Bibhuprasad Mahakud, Jing Li, Rajat Gupta, Lei Feng, Muhammad Waqas, Hui Wang, Seungkyu Ha, Davide Cieri, Maren Tabea Meinhard, Giorgia Rauco, Ali Harb, Benjamin William Allen, Pratyush Das, Miao Hu, Lei Li, Amr Mohamed