Dynamic semantics is a framework in logic and natural language semantics that treats the meaning of a sentence as its potential to update a context. In static semantics, knowing the meaning of a sentence amounts to knowing when it is true; in dynamic semantics, knowing the meaning of a sentence means knowing "the change it brings about in the information state of anyone who accepts the news conveyed by it." In dynamic semantics, sentences are mapped to functions called context change potentials, which take an input context and return an output context. Dynamic semantics was originally developed by Irene Heim and Hans Kamp in 1981 to model anaphora, but has since been applied widely to phenomena including presupposition, plurals, questions, discourse relations, and modality.
Discourse representation theory and Donkey anaphora
The first systems of dynamic semantics were the closely related File Change Semantics and discourse representation theory, developed simultaneously and independently by Irene Heim and Hans Kamp. These systems were intended to capture donkey anaphora, which resists an elegant compositional treatment in classic approaches to semantics such as Montague grammar. Donkey anaphora is exemplified by the infamous donkey sentences, first noticed by the medieval logician Walter Burley and brought to modern attention by Peter Geach.
Donkey sentence (relative clause): Every farmer who owns a donkey beats it.
Donkey sentence (conditional): If a farmer owns a donkey, he beats it.
To capture the empirically observed truth conditions of such sentences in first order logic, one would need to translate the indefinite noun phrase "a donkey" as a universal quantifier scoping over the variable corresponding to the pronoun "it".
FOL translation of donkey sentence: :
While this translation captures (or approximates) the truth conditions of the natural language sentences, its relationship to the syntactic form of the sentence is puzzling in two ways. First, indefinites in non-donkey contexts normally express existential rather than universal quantification.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the branch of linguistics known as pragmatics, a presupposition (or PSP) is an implicit assumption about the world or background belief relating to an utterance whose truth is taken for granted in discourse. Examples of presuppositions include: Jane no longer writes fiction. Presupposition: Jane once wrote fiction. Have you stopped eating meat? Presupposition: you had once eaten meat. Have you talked to Hans? Presupposition: Hans exists.
Formal semantics is the study of grammatical meaning in natural languages using formal tools from logic, mathematics and theoretical computer science. It is an interdisciplinary field, sometimes regarded as a subfield of both linguistics and philosophy of language. It provides accounts of what linguistic expressions mean and how their meanings are composed from the meanings of their parts. The enterprise of formal semantics can be thought of as that of reverse-engineering the semantic components of natural languages' grammars.
In logic, a strict conditional (symbol: , or ⥽) is a conditional governed by a modal operator, that is, a logical connective of modal logic. It is logically equivalent to the material conditional of classical logic, combined with the necessity operator from modal logic. For any two propositions p and q, the formula p → q says that p materially implies q while says that p strictly implies q. Strict conditionals are the result of Clarence Irving Lewis's attempt to find a conditional for logic that can adequately express indicative conditionals in natural language.
The Object Constraint Language (OCL) has been for many years formalized both in its syntax and semantics in the language standard. While the official definition of OCL's syntax is already widely accepted and strictly supported by most OCL tools, there is n ...
The Object Constraint Language (OCL) has been for many years formalized both in its syntax and semantics in the language standard. While the official definition of OCL’s syntax is already widely accepted and strictly supported by most OCL tools, there is n ...