A password, sometimes called a passcode (for example in Apple devices), is secret data, typically a string of characters, usually used to confirm a user's identity. Traditionally, passwords were expected to be memorized, but the large number of password-protected services that a typical individual accesses can make memorization of unique passwords for each service impractical. Using the terminology of the NIST Digital Identity Guidelines, the secret is held by a party called the claimant while the party verifying the identity of the claimant is called the verifier. When the claimant successfully demonstrates knowledge of the password to the verifier through an established authentication protocol, the verifier is able to infer the claimant's identity.
In general, a password is an arbitrary string of characters including letters, digits, or other symbols. If the permissible characters are constrained to be numeric, the corresponding secret is sometimes called a personal identification number (PIN).
Despite its name, a password does not need to be an actual word; indeed, a non-word (in the dictionary sense) may be harder to guess, which is a desirable property of passwords. A memorized secret consisting of a sequence of words or other text separated by spaces is sometimes called a passphrase. A passphrase is similar to a password in usage, but the former is generally longer for added security.
Passwords have been used since ancient times. Sentries would challenge those wishing to enter an area to supply a password or watchword, and would only allow a person or group to pass if they knew the password. Polybius describes the system for the distribution of watchwords in the Roman military as follows:
The way in which they secure the passing round of the watchword for the night is as follows: from the tenth maniple of each class of infantry and cavalry, the maniple which is encamped at the lower end of the street, a man is chosen who is relieved from guard duty, and he attends every day at sunset at the tent of the tribune, and receiving from him the watchword—that is a wooden tablet with the word inscribed on it – takes his leave, and on returning to his quarters passes on the watchword and tablet before witnesses to the commander of the next maniple, who in turn passes it to the one next to him.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Transport Layer Security (TLS) is a cryptographic protocol designed to provide communications security over a computer network. The protocol is widely used in applications such as email, instant messaging, and voice over IP, but its use in securing HTTPS remains the most publicly visible. The TLS protocol aims primarily to provide security, including privacy (confidentiality), integrity, and authenticity through the use of cryptography, such as the use of certificates, between two or more communicating computer applications.
Cryptography, or cryptology (from κρυπτός "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others.
Multi-factor authentication (MFA; two-factor authentication, or 2FA, along with similar terms) is an electronic authentication method in which a user is granted access to a website or application only after successfully presenting two or more pieces of evidence (or factors) to an authentication mechanism. MFA protects personal data—which may include personal identification or financial assets—from being accessed by an unauthorized third party that may have been able to discover, for example, a single password.
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
This is an introductory course to computer security and privacy. Its goal is to provide students with means to reason about security and privacy problems, and provide them with tools to confront them.
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
Emphasizes the significance of hashing, salting, and secure password storage in data security, highlighting the use of salt to prevent dictionary attacks and memory hard functions to slow down password cracking.
We present Orthros, a 128-bit block pseudorandom function. It is designed with primary focus on latency of fully unrolled circuits. For this purpose, we adopt a parallel structure comprising two keyed permutations. The round function of each permutation is ...
2021
We present the design and implementation of SafetyPin, a system for encrypted mobile-device backups. Like existing cloud-based mobile-backup systems, including those of Apple and Google, SafetyPin requires users to remember only a short PIN and defends aga ...
We present the design and implementation of SafetyPin, a system for encrypted mobile-device backups. Like existing cloud-based mobile-backup systems, including those of Apple and Google, SafetyPin requires users to remember only a short PIN and defends aga ...