A provirus is a virus genome that is integrated into the DNA of a host cell. In the case of bacterial viruses (bacteriophages), proviruses are often referred to as prophages. However, proviruses are distinctly different from prophages and these terms should not be used interchangeably. Unlike prophages, proviruses do not excise themselves from the host genome when the host cell is stressed.
This state can be a stage of virus replication, or a state that persists over longer periods of time as either inactive viral infections or an endogenous viral element. In inactive viral infections the virus will not replicate itself except through replication of its host cell. This state can last over many host cell generations.
Endogenous retroviruses are always in the state of a provirus. When a (nonendogenous) retrovirus invades a cell, the RNA of the retrovirus is reverse-transcribed into DNA by reverse transcriptase, then inserted into the host genome by an integrase.
A provirus does not directly make new DNA copies of itself while integrated into a host genome in this way. Instead, it is passively replicated along with the host genome and passed on to the original cell's offspring; all descendants of the infected cell will also bear proviruses in their genomes. This is known as lysogenic viral reproduction. Integration can result in a latent infection or a productive infection. In a productive infection, the provirus is transcribed into messenger RNA which directly produces new virus, which in turn will infect other cells via the lytic cycle. A latent infection results when the provirus is transcriptionally silent rather than active.
A latent infection may become productive in response to changes in the host's environmental conditions or health; the provirus may be activated and begin transcription of its viral genome. This can result in the destruction of its host cell because the cell's protein synthesis machinery is hijacked to produce more viruses.
Proviruses may account for approximately 8% of the human genome in the form of inherited endogenous retroviruses.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsky's 1892 article describing a non-bacterial pathogen infecting tobacco plants and the discovery of the tobacco mosaic virus by Martinus Beijerinck in 1898, more than 11,000 of the millions of virus species have been described in detail.
A reverse transcriptase (RT) is an enzyme used to generate complementary DNA (cDNA) from an RNA template, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genomes, by retrotransposon mobile genetic elements to proliferate within the host genome, and by eukaryotic cells to extend the telomeres at the ends of their linear chromosomes.
A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. After invading a host cell's cytoplasm, the virus uses its own reverse transcriptase enzyme to produce DNA from its RNA genome, the reverse of the usual pattern, thus retro (backwards). The new DNA is then incorporated into the host cell genome by an integrase enzyme, at which point the retroviral DNA is referred to as a provirus.
This review focuses on the acceleration of the bactericidal and fungicidal effects by uniform, adhesive Cu-based nanocomposites on textile and thin polymer surfaces. The acceleration of the bacterial inactivation kinetics mediated by Cu, TiO2/Cu and ZrO2-T ...
ELSEVIER2020
Transposable elements (TEs), also called jumping genes, are genetic elements capable of changing their position within the genome of their host. They make up large fractions of genomes, including 45% of human DNA content, according to current estimates.S ...
Gene expression aberration is a hallmark of cancers, but the mechanisms underlying such aberrations remain unclear. Human endogenous retroviruses (HERVs) are genomic repetitive elements that potentially function as enhancers. Since numerous HERVs are epige ...