A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, because gases or other material may be falling from the inner edge of the disk onto the surface of the star. This process should not be confused with the accretion process thought to build up the planets themselves. Externally illuminated photo-evaporating protoplanetary disks are called proplyds.
Protostars form from molecular clouds consisting primarily of molecular hydrogen. When a portion of a molecular cloud reaches a critical size, mass, or density, it begins to collapse under its own gravity. As this collapsing cloud, called a solar nebula, becomes denser, random gas motions originally present in the cloud average out in favor of the direction of the nebula's net angular momentum. Conservation of angular momentum causes the rotation to increase as the nebula radius decreases. This rotation causes the cloud to flatten out—much like forming a flat pizza out of dough—and take the form of a disk. This occurs because centripetal acceleration from the orbital motion resists the gravitational pull of the star only in the radial direction, but the cloud remains free to collapse in the axial direction. The outcome is the formation of a thin disc supported by gas pressure in the axial direction. The initial collapse takes about 100,000 years. After that time the star reaches a surface temperature similar to that of a main sequence star of the same mass and becomes visible.
It is now a T Tauri star. Accretion of gas onto the star continues for another 10 million years, before the disk disappears, perhaps being blown away by the young star's stellar wind, or perhaps simply ceasing to emit radiation after accretion has ended. The oldest protoplanetary disk yet discovered is 25 million years old.
Protoplanetary disks around T Tauri stars differ from the disks surrounding the primary components of close binary systems with respect to their size and temperature.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Fomalhaut (ˈfɒmələʊt, ˈfoʊməlhɔːt) is the brightest star in the southern constellation of Piscis Austrinus, the Southern Fish, and one of the brightest stars in the night sky. It has the Bayer designation Alpha Piscis Austrini, which is Latinized from α Piscis Austrini, and is abbreviated Alpha PsA or α PsA. This is a class A star on the main sequence approximately from the Sun as measured by the Hipparcos astrometry satellite. Since 1943, the spectrum of this star has served as one of the stable anchor points by which other stars are classified.
T Tauri stars (TTS) are a class of variable stars that are less than about ten million years old. This class is named after the prototype, T Tauri, a young star in the Taurus star-forming region. They are found near molecular clouds and identified by their optical variability and strong chromospheric lines. T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence along the Hayashi track, a luminosity–temperature relationship obeyed by infant stars of less than 3 solar masses () in the pre-main-sequence phase of stellar evolution.
The formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed. This model, known as the nebular hypothesis, was first developed in the 18th century by Emanuel Swedenborg, Immanuel Kant, and Pierre-Simon Laplace.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Explores dispersion relations, system responses to perturbations, and the stability of rotating systems, focusing on the origin of spiral structures in galaxies.
Introduces logic, algorithms, counting, and probabilities in computer science, emphasizing problem-solving techniques.
, , ,
The prediction of trajectories of buoyancy-driven objects immersed in a viscous fluid is a key problem in fluid dynamics. Simple-shaped objects, such as disks, present a great variety of trajectories, ranging from zig-zag to tumbling and chaotic motions. Y ...
Detailed chemical abundances of very metal-poor (VMP; [Fe/H] < -2) stars are important for better understanding the first stars, early star formation, and chemical enrichment of galaxies. Big on-going and coming high-resolution spectroscopic surveys provid ...
We analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of da ...