Cerium is a chemical element with the symbol Ce and atomic number 58. Cerium is a soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it often shows the oxidation state of +3 characteristic of the series, it also has a stable +4 state that does not oxidize water. It is also considered one of the rare-earth elements. Cerium has no known biological role in humans but is not particularly toxic, except with intense or continued exposure. Despite always occurring in combination with the other rare-earth elements in minerals such as those of the monazite and bastnäsite groups, cerium is easy to extract from its ores, as it can be distinguished among the lanthanides by its unique ability to be oxidized to the +4 state in aqueous solution. It is the most common of the lanthanides, followed by neodymium, lanthanum, and praseodymium. It is the 25th-most abundant element, making up 66 ppm of the Earth's crust, half as much as chlorine and five times as much as lead. Cerium was the first of the lanthanides to be discovered, in Bastnäs, Sweden. It was discovered by Jöns Jakob Berzelius and Wilhelm Hisinger in 1803, and independently by Martin Heinrich Klaproth in Germany in the same year. In 1839 Carl Gustaf Mosander became the first to isolate the metal. Today, cerium and its compounds have a variety of uses: for example, cerium(IV) oxide is used to polish glass and is an important part of catalytic converters. Cerium metal is used in ferrocerium lighters for its pyrophoric properties. Cerium-doped YAG phosphor is used in conjunction with blue light-emitting diodes to produce white light in most commercial white LED light sources. Cerium is the second element of the lanthanide series. In the periodic table, it appears between the lanthanides lanthanum to its left and praseodymium to its right, and above the actinide thorium. It is a ductile metal with a hardness similar to that of silver.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MSE-422: Advanced metallurgy
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
Related lectures (20)
Titanium Metallurgy Overview
Covers titanium metallurgy, including production processes, phase diagrams, and interstitial solid solutions, highlighting the technical importance and cost factors.
Analysis IV: Exam Instructions
Covers exam instructions, wave equation solutions for vibrating ropes, and determining the final solution based on initial conditions.
Chemistry of Carbon Compounds
Explores the chemistry of carbon compounds, acid-base reactions, carbon allotropes, tin allotropic forms, corrosion, and ammonia production.
Show more
Related publications (74)

Speciation of Lanthanide Metal Ion Dopants in Microcrystalline All-Inorganic Halide Perovskite CsPbCl3

David Lyndon Emsley, Dominik Józef Kubicki, Daniel Prochowicz, Amita Ummadisingu, Albert Hofstetter

Lanthanides are versatile modulators of optoelectronic properties owing to their narrow optical emission spectra across the visible and near-infrared range. Their use in metal halide perovskites (MHPs) has recently gained prominence, although their fate in ...
Amer Chemical Soc2024

Electrical and Optical Manifestations of Flat Band Physics in Van der Waals Materials

Gabriele Pasquale

The scientific progress is significantly transforming contemporary society with the introduction and widespread application of technologies like artificial intelligence and quantum computing. Despite their profound impact, these technologies necessitate en ...
EPFL2024

Realization of Organocerium-Based Fullerene Molecular Materials Showing Mott Insulator-Type Behavior

Pragati Pandey, Xiaoyu Wang

Electron-rich organocerium complexes (C5Me4H)(3)Ce and [(C5Me5)(2)Ce(ortho-oxa)], with redox potentials E-1/2 = -0.82 V and E-1/2 = -0.86 V versus Fc/Fc(+), respectively, were reacted with fullerene (C-60) in different stoichiometries to obtain molecular m ...
Amer Chemical Soc2024
Show more
Related concepts (31)
Allotropes of plutonium
Plutonium occurs in a variety of allotropes, even at ambient pressure. These allotropes differ widely in crystal structure and density; the α and δ allotropes differ in density by more than 25% at constant pressure. Plutonium normally has six allotropes and forms a seventh (zeta, ζ) under high temperature and a limited pressure range. These allotropes have very similar energy levels but significantly varying densities and crystal structures.
Carl Auer von Welsbach
Carl Auer von Welsbach (1 September 1858 – 4 August 1929), who received the Austrian noble title of Freiherr Auer von Welsbach in 1901, was an Austrian scientist and inventor, who separated didymium into the elements neodymium and praseodymium in 1885. He was also one of three scientists to independently discover the element lutetium (which he named cassiopeium), separating it from ytterbium in 1907, setting off the longest priority dispute in the history of chemistry.
Ferrocerium
Ferrocerium (also known in Europe as Auermetall) is a synthetic pyrophoric alloy of mischmetal (cerium, lanthanum, neodymium, other trace lanthanides and some iron – about 95% lanthanides and 5% iron) hardened by blending in oxides of iron and/or magnesium. When struck with a harder material, the mixture produces hot sparks that can reach temperatures of when rapidly oxidized by the process of striking the rod. Striking both scrapes fragments off, exposing them to the oxygen in the air, and easily ignites them by friction heat due to cerium's remarkably low ignition temperature of between .
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.