Carbapenems are a class of very effective antibiotic agents most commonly used for the treatment of severe bacterial infections. This class of antibiotics is usually reserved for known or suspected multidrug-resistant (MDR) bacterial infections. Similar to penicillins and cephalosporins, carbapenems are members of the beta-lactam antibiotics drug class, which kill bacteria by binding to penicillin-binding proteins, thus inhibiting bacterial cell wall synthesis. However, these agents individually exhibit a broader spectrum of activity compared to most cephalosporins and penicillins. Furthermore, carbapenems are typically unaffected by emerging antibiotic resistance, even to other beta-lactams.
Carbapenem antibiotics were originally developed at Merck & Co. from the carbapenem thienamycin, a naturally derived product of Streptomyces cattleya. Concern has arisen in recent years over increasing rates of resistance to carbapenems, as there are few therapeutic options for treating infections caused by carbapenem-resistant bacteria (such as Klebsiella pneumoniae and other carbapenem-resistant Enterobacteriaceae).
The carbapenem ertapenem is one of several first-line agents recommended by the Infectious Disease Society of America for the empiric treatment of community-acquired intra-abdominal infections of mild-to-moderate severity. Agents with anti-pseudomonal activity, including doripenem, imipenem, and meropenem, are not recommended in this population. Doripenem, imipenem, and meropenem are recommended for high-risk community-acquired abdominal infections and for abdominal infections that are hospital-acquired.
A 2015 systematic review found little evidence that would support the identification of a best antimicrobial regimen for complicated urinary tract infections, but identified three high-quality trials supporting high cure rates with doripenem, including in patients with levofloxacin-resistant E. coli infections.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Enterobacter is a genus of common Gram-negative, facultatively anaerobic, rod-shaped, non-spore-forming bacteria of the family Enterobacteriaceae. It is the type genus of the order Enterobacterales. Several strains of these bacteria are pathogenic and cause opportunistic infections in immunocompromised (usually hospitalized) hosts and in those who are on mechanical ventilation. The urinary and respiratory tracts are the most common sites of infection. The genus Enterobacter is a member of the coliform group of bacteria.
Piperacillin/tazobactam, sold under the brand name Zosyn among others, is a combination medication containing the antibiotic piperacillin and the β-lactamase inhibitor tazobactam. The combination has activity against many Gram-positive and Gram-negative bacteria including Pseudomonas aeruginosa. It is used to treat pelvic inflammatory disease, intra-abdominal infection, pneumonia, cellulitis, and sepsis. It is given by injection into a vein. Common adverse effects include headache, trouble sleeping, rash, nausea, constipation, and diarrhea.
Quinolone antibiotics constitute a large group of broad-spectrum bacteriocidals that share a bicyclic core structure related to the substance 4-quinolone. They are used in human and veterinary medicine to treat bacterial infections, as well as in animal husbandry, specifically poultry production. Nearly all quinolone antibiotics in use are fluoroquinolones, which contain a fluorine atom in their chemical structure and are effective against both Gram-negative and Gram-positive bacteria.
Antibiotic resistance is nowadays a major public health issue. Rapid antimicrobial susceptibility tests (AST) are one of the options to fight this deadly threat. Performing AST with single-cell sensitivity that is rapid, cheap, and widely accessible, is ch ...
Delves into the molecular basis of genetic diseases, discussing specific examples like Phenylketonuria and Haemophilia A, and the development of small molecule drugs for genetic disorders.
,
By acquiring or evolving resistance to one antibiotic, bacteria can become resistant to a second one, due to shared underlying mechanisms. This is called cross-resistance (XR) and further limits therapeutic choices. The opposite scenario, in which initial ...
2024
,
The biofilm lifestyle is the most widespread survival strategy in the bacterial world. Pseudomonas aeruginosa biofilms cause chronic infections and are highly recalcitrant to antimicrobials. The genetic requirements allowing P. aeruginosa to grow into biof ...