Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). It is a colorless liquid with an odor described as objectionable, and typical of amines. The name comes from the genus name Piper, which is the Latin word for pepper. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins.
Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid.
Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst:
C5H5N + 3 H2 → C5H10NH
Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.
Piperidine itself has been obtained from black pepper, from Psilocaulon absimile (Aizoaceae), and in Petrosimonia monandra.
The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco, and the toxic alkaloid coniine from poison hemlock, which was used to put Socrates to death.
Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position. After much controversy during the 1950s–1970s, the equatorial conformation was found to be more stable by 0.72 kcal/mol in the gas phase. In nonpolar solvents, a range between 0.2 and 0.6 kcal/mol has been estimated, but in polar solvents the axial conformer may be more stable.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Haloperidol, sold under the brand name Haldol among others, is a typical antipsychotic medication. Haloperidol is used in the treatment of schizophrenia, tics in Tourette syndrome, mania in bipolar disorder, delirium, agitation, acute psychosis, and hallucinations from alcohol withdrawal. It may be used by mouth or injection into a muscle or a vein. Haloperidol typically works within 30 to 60 minutes. A long-acting formulation may be used as an injection every four weeks by people with schizophrenia or related illnesses, who either forget or refuse to take the medication by mouth.
Opioids are substances that act on opioid receptors to produce morphine-like effects. Medically they are primarily used for pain relief, including anesthesia. Other medical uses include suppression of diarrhea, replacement therapy for opioid use disorder, reversing opioid overdose, and suppressing cough. Extremely potent opioids such as carfentanil are approved only for veterinary use. Opioids are also frequently used non-medically for their euphoric effects or to prevent withdrawal.
In organic chemistry, the Knoevenagel condensation (ˈknøːvənaːɡl̩) reaction is a type of chemical reaction named after German chemist Emil Knoevenagel. It is a modification of the aldol condensation. A Knoevenagel condensation is a nucleophilic addition of an active hydrogen compound to a carbonyl group followed by a dehydration reaction in which a molecule of water is eliminated (hence condensation). The product is often an α,β-unsaturated ketone (a conjugated enone). In this reaction the carbonyl group is an aldehyde or a ketone.
An enantioselective total synthesis of (-)-terengganensine A, a heptacyclic monoterpene indole alkaloid, was performed. A short sequence allowed to obtain the enantio-enriched target in good overall yield. The synthesis featured a key asymmetric transfer h ...
EPFL2018
, , , ,
We report herein the enantioselective total synthesis of three monoterpene indole alkaloids, namely, (+)-alstilobanine C, (+)-undulifoline, and (-)-alpneumine H. The key features of our synthesis include: a) introduction of chirality via enantioselective d ...
The structure of uleine type alkaloids is characterized by the presence of a bridged tetracyclic hexahydro-1H-1,5-methanoazocino[4,3-b]indole ring system 1. Various strategies have been developed to access this polycyclic structural motif. We report herein ...