A waveguide filter is an electronic filter constructed with waveguide technology. Waveguides are hollow metal conduits inside which an electromagnetic wave may be transmitted. Filters are devices used to allow signals at some frequencies to pass (the passband), while others are rejected (the stopband). Filters are a basic component of electronic engineering designs and have numerous applications. These include selection of signals and limitation of noise. Waveguide filters are most useful in the microwave band of frequencies, where they are a convenient size and have low loss. Examples of microwave filter use are found in satellite communications, telephone networks, and television broadcasting. Waveguide filters were developed during World War II to meet the needs of radar and electronic countermeasures, but afterwards soon found civilian applications such as use in microwave links. Much of post-war development was concerned with reducing the bulk and weight of these filters, first by using new analysis techniques that led to elimination of unnecessary components, then by innovations such as dual-mode cavities and novel materials such as ceramic resonators. A particular feature of waveguide filter design concerns the mode of transmission. Systems based on pairs of conducting wires and similar technologies have only one mode of transmission. In waveguide systems, any number of modes are possible. This can be both a disadvantage, as spurious modes frequently cause problems, and an advantage, as a dual-mode design can be much smaller than the equivalent waveguide single mode design. The chief advantages of waveguide filters over other technologies are their ability to handle high power and their low loss. The chief disadvantages are their bulk and cost when compared with technologies such as microstrip filters. There is a wide array of different types of waveguide filters. Many of them consist of a chain of coupled resonators of some kind that can be modelled as a ladder network of LC circuits.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (13)
EE-445: Microwaves, the basics of wireless communications
This course is an introduction to microwaves and microwave passive circuits. A special attention is given to the introduction of the notion of distributed circuits and to the scattering matrix
EE-712: Advanced microwaves for wireless communications
This course is intended for doctoral students using microwaves and microwave equipment during their PhD. It starts with a reminder on microwave circuit theory and continues with the main issues link
MICRO-471: Fundamentals of integrated photonic components
This course gives an introduction to basic integrated photonics components that are at the core of photonic nanotechnologies today. The course combines theoretical description with practical lab work
Show more