A waveguide filter is an electronic filter constructed with waveguide technology. Waveguides are hollow metal conduits inside which an electromagnetic wave may be transmitted. Filters are devices used to allow signals at some frequencies to pass (the passband), while others are rejected (the stopband). Filters are a basic component of electronic engineering designs and have numerous applications. These include selection of signals and limitation of noise. Waveguide filters are most useful in the microwave band of frequencies, where they are a convenient size and have low loss. Examples of microwave filter use are found in satellite communications, telephone networks, and television broadcasting.
Waveguide filters were developed during World War II to meet the needs of radar and electronic countermeasures, but afterwards soon found civilian applications such as use in microwave links. Much of post-war development was concerned with reducing the bulk and weight of these filters, first by using new analysis techniques that led to elimination of unnecessary components, then by innovations such as dual-mode cavities and novel materials such as ceramic resonators.
A particular feature of waveguide filter design concerns the mode of transmission. Systems based on pairs of conducting wires and similar technologies have only one mode of transmission. In waveguide systems, any number of modes are possible. This can be both a disadvantage, as spurious modes frequently cause problems, and an advantage, as a dual-mode design can be much smaller than the equivalent waveguide single mode design. The chief advantages of waveguide filters over other technologies are their ability to handle high power and their low loss. The chief disadvantages are their bulk and cost when compared with technologies such as microstrip filters.
There is a wide array of different types of waveguide filters. Many of them consist of a chain of coupled resonators of some kind that can be modelled as a ladder network of LC circuits.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber waveguides, transparent dielectric waveguides made of plastic and glass, liquid light guides, and liquid waveguides. Optical waveguides are used as components in integrated optical circuits or as the transmission medium in local and long-haul optical communication systems.
Distributed-element circuits are electrical circuits composed of lengths of transmission lines or other distributed components. These circuits perform the same functions as conventional circuits composed of passive components, such as capacitors, inductors, and transformers. They are used mostly at microwave frequencies, where conventional components are difficult (or impossible) to implement. Conventional circuits consist of individual components manufactured separately then connected together with a conducting medium.
Planar transmission lines are transmission lines with conductors, or in some cases dielectric (insulating) strips, that are flat, ribbon-shaped lines. They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these components. Transmission lines are more than simply interconnections.
This course is an introduction to microwaves and microwave passive circuits. A special attention is given to the introduction of the notion of distributed circuits and to the scattering matrix
This course is intended for doctoral students using microwaves and microwave equipment during their PhD. It starts with a reminder on microwave circuit theory and continues with the main issues link
This course gives an introduction to basic integrated photonics components that are at the core of photonic nanotechnologies today. The course combines theoretical description with practical lab work
Since the discovery of dissipative Kerr solitons in optical microresonators, significant progress has been made in the understanding of the underlying physical principles from the fundamental side and generation of broadband coherent optical Kerr frequency ...
EPFL2024
, ,
This paper presents a solution to overcome the inherently limited bandwidth of substrate-integrated waveguide (SIW) slot antennas. It is analytically shown that by decreasing the permittivity of a dielectric loaded slot antenna, the resulting bandwidth inc ...
2024
Discute de l'impact de la dépendance de longueur d'onde sur la propagation gaussienne d'impulsion dans la fibre optique.
Explore les composants non idéaux, les filtres, les paramètres d'impédance et les méthodes de blindage dans les circuits électroniques.
Explore les propriétés et le développement historique des micro-ondes, des équations de Maxwell aux premières transmissions transatlantiques et aux avancées technologiques.
In this thesis work, we propose to exploit an innovative micro/nano-fabrication process, based on controlled fluid instabilities of a thin viscous film of chalcogenide glass. Amorphous selenium and arsenic triselenide were used in this thesis work, and com ...