In computing, the Windows Driver Model (WDM) - also known at one point as the Win32 Driver Model - is a framework for device drivers that was introduced with Windows 98 and Windows 2000 to replace VxD, which was used on older versions of Windows such as Windows 95 and Windows 3.1, as well as the Windows NT Driver Model.
WDM drivers are layered in a stack and communicate with each other via I/O request packets (IRPs). The Microsoft Windows Driver Model unified driver models for the Windows 9x and Windows NT product lines by standardizing requirements and reducing the amount of code that needed to be written. WDM drivers will not run on operating systems earlier than Windows 98 or Windows 2000, such as Windows 95 (before the OSR2 update that sideloads the WDM model), Windows NT 4.0 and Windows 3.1. By conforming to WDM, drivers can be binary compatible and source-compatible across Windows 98, Windows 98 Second Edition, Windows Me, Windows 2000, Windows XP, Windows Server 2003 and Windows Vista (for backwards compatibility) on x86-based computers. WDM drivers are designed to be forward-compatible so that a WDM driver can run on a version of Windows newer than what the driver was initially written for, but doing that would mean that the driver cannot take advantage of any new features introduced with the new version. WDM is generally not backward-compatible, that is, a WDM driver is not guaranteed to run on any older version of Windows. For example, Windows XP can use a driver written for Windows 2000 but will not make use of any of the new WDM features that were introduced in Windows XP. However, a driver written for Windows XP may or may not load on Windows 2000.
WDM exists in the intermediary layer of Windows 2000 kernel-mode drivers and was introduced to increase the functionality and ease of writing drivers for Windows. Although WDM was mainly designed to be binary and source compatible between Windows 98 and Windows 2000, this may not always be desired and so specific drivers can be developed for either operating system.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Windows 9x is a generic term referring to a series of Microsoft Windows computer operating systems produced from 1995 to 2000, which were based on the Windows 95 kernel and its underlying foundation of MS-DOS, both of which were updated in subsequent versions. The first version in the 9x series was Windows 95, which was succeeded by Windows 98 and then Windows Me, which was the third and last version of Windows on the 9x line, until the series was superseded by Windows XP. Windows 9x is predominantly known for its use in home desktops.
Windows NT is a proprietary graphical operating system produced by Microsoft, the first version of which was released on July 27, 1993. It is a processor-independent, multiprocessing and multi-user operating system. The first version of Windows NT was Windows NT 3.1 and was produced for workstations and server computers. It was a commercially focused operating system intended to complement consumer versions of Windows that were based on MS-DOS (including Windows 1.0 through Windows 3.1x).
Windows 3.1 is a major release of Microsoft Windows. It was released to manufacturing on April 6, 1992, as a successor to Windows 3.0. Like its predecessors, the Windows 3.1 series ran as a shell on top of MS-DOS. Codenamed Janus, Windows 3.1 introduced the TrueType font system as a competitor to Adobe Type Manager. Its multimedia was also expanded, and screensavers were introduced, alongside new software such as Windows Media Player and Sound Recorder. and Control Panel received tweaks, while Windows 3.
The Universal Serial Bus (USB) connects external devices to a host. This interface exposes the OS kernels and device drivers to attacks by malicious devices. Unfortunately, kernels and drivers were developed under a security model that implicitly trusts co ...
USENIX ASSOC2020
, ,
This article presents S2E, a platform for analyzing the properties and behavior of software systems, along with its use in developing tools for comprehensive performance profiling, reverse engineering of proprietary software, and automated testing of kerne ...
2012
, ,
This paper presents S2E, a platform for analyzing the properties and behavior of software systems. We demonstrate S2E's use in developing practical tools for comprehensive performance profiling, reverse engineering of proprietary software, and bug finding ...