In organic chemistry, an azo coupling is an organic reaction between a diazonium compound () and another aromatic compound that produces an azo compound (). In this electrophilic aromatic substitution reaction, the aryldiazonium cation is the electrophile and the activated carbon (usually from an arene which is called coupling agent) act as a nucleophile. In most cases, including the examples below, the diazonium compound is also aromatic.
The process of conversion of primary aromatic amines into its diazonium salt is called diazotization. Diazonium salts are important synthetic intermediates that can undergo coupling reactions to form azo dyes and electrophilic substitution reactions to introduce functional groups.
Aromatic azo compounds tend to be brightly colored due to the extended conjugated systems. Many are used as dyes (see azo dye). Important azo dyes include methyl red and pigment red 170. Azo printing exploits this reaction as well. In this case, the diazonium ion is degraded by light, leaving a latent image in undegraded diazonium salt which is made to react with a phenol, producing a colored image: the blueprint.
Prontosil, a first sulfa drug, was once produced by azo coupling. The azo compound is a prodrug that is activated in-vivo to produce the sufanilamide, which is active.
The reaction is also used in the Pauly reaction test to detect tyrosine or histidine residues in proteins.
Many procedures have been described, which re. Phenol reacts with benzenediazonium chloride to give a Solvent Yellow 7, a yellow-orange azo compound. The reaction is faster at high pH.
The related dye called aniline yellow is produced from the reaction of aniline and the diazonium salt. In this case the C- and N-coupling compete. When the para position to the orientating group (for aromatic electrophilic substitution) is substituted, coupling occurs at the ortho position, albeit at a slower rate.
Naphthols are popular coupling agents.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Azo dyes are organic compounds bearing the functional group R−N=N−R′, in which R and R′ are usually aryl and substituted aryl groups. They are a commercially important family of azo compounds, i.e. compounds containing the C-N=N-C linkage. Azo dyes are synthetic dyes and do not occur naturally. Most azo dyes contain only one azo group, but some dyes contain two or three azo groups, called "diazo dyes" and "triazo dyes" respectively. Azo dyes comprise 60-70% of all dyes used in food and textile industries.
Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halide. According to X-ray crystallography the linkage is linear in typical diazonium salts. The bond distance in benzenediazonium tetrafluoroborate is 1.083(3) Å, which is almost identical to that for dinitrogen molecule (N≡N). The linear free energy constants σm and σp indicate that the diazonium group is strongly electron-withdrawing.
Aniline (, and -ine indicating a derived substance) is an organic compound with the formula . Consisting of a phenyl group () attached to an amino group (), aniline is the simplest aromatic amine. It is an industrially significant commodity chemical, as well as a versatile starting material for fine chemical synthesis. Its main use is in the manufacture of precursors to polyurethane, dyes, and other industrial chemicals. Like most volatile amines, it has the odor of rotten fish.
Explores Lipschitz dependence supported by examples and theoretical hypotheses, emphasizing global unique solutions.
Explores Bitcoin scripting, Ethereum gas, smart contracts, limitations, and common uses.
Covers the convergence criteria for sequences, including operations on limits and sequences defined by recurrence.
The recent discovery of an N2O-based synthesis of triazenes in our group has enabled the synthesis and investigation of 1-alkynyl triazenes. Early studies showed their potential for a functional group tolerant synthesis of 1-vinyl triazenes, which is furth ...
EPFL2022
Nitrous oxide (N2O) has gained much interest because of its physiological effects ("laughing gas") and its negative environmental impact ("greenhouse gas", "ozone-depleting substance"): It has a lifetime of more than 100 years in the atmosphere. Its persis ...
Examples for applications of nitrous oxide in organic synthesis remain rare up until today. First mayor contributions of our group were published in 2012, when nitrous oxide was successfully captured by N-heterocyclic carbenes. Subsequent studies investiga ...