Concept

Fomepizole

Summary
Fomepizole, also known as 4-methylpyrazole, is a medication used to treat methanol and ethylene glycol poisoning. It may be used alone or together with hemodialysis. It is given by injection into a vein. Common side effects include headache, nausea, sleepiness, and unsteadiness. It is unclear if use during pregnancy causes risk to a fetus. Fomepizole works by blocking the enzyme that converts methanol and ethylene glycol to their toxic breakdown products. Fomepizole was approved for medical use in the United States in 1997. It is on the World Health Organization's List of Essential Medicines. Fomepizole is used to treat ethylene glycol and methanol poisoning. It acts to inhibit the breakdown of these toxins into their active toxic metabolites. Fomepizole is a competitive inhibitor of the enzyme alcohol dehydrogenase, found in the liver. This enzyme plays a key role in the metabolism of ethylene glycol, and of methanol. Ethylene glycol is first metabolized to glycolaldehyde by alcohol dehydrogenase. Glycolaldehyde then undergoes further oxidation to glycolate, glyoxylate, and oxalate. Glycolate and oxalate are the primary toxins responsible for the metabolic acidosis, and for the renal damage, seen in ethylene glycol poisoning. Methanol is first metabolized to formaldehyde by alcohol dehydrogenase. Formaldehyde then undergoes further oxidation, via formaldehyde dehydrogenase, to become formic acid. Formic acid is the primary toxin responsible for the metabolic acidosis, and for the visual disturbances, associated with methanol poisoning. By competitively inhibiting the first enzyme, alcohol dehydrogenase, in the metabolism of ethylene glycol and methanol, fomepizole slows the production of the toxic metabolites. The slower rate of metabolite production allows the liver to process and excrete the metabolites as they are produced, limiting the accumulation in tissues such as the kidney and eye. As a result, much of the organ damage is avoided. Fomepizole is most effective when given soon after ingestion of ethylene glycol or methanol.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Methanogenesis and Methane Oxidation
Explores methanogenesis, acetogenesis, and methane oxidation processes, enzymes, and energy generation mechanisms in anaerobic digesters and methanogenic species.
Related publications (10)