In finance, moneyness is the relative position of the current price (or future price) of an underlying asset (e.g., a stock) with respect to the strike price of a derivative, most commonly a call option or a put option. Moneyness is firstly a three-fold classification:
If the derivative would have positive intrinsic value if it were to expire today, it is said to be in the money;
If the derivative would be worthless if expiring with the underlying at its current price, it is said to be out of the money;
And if the current underlying price and strike price are equal, the derivative is said to be at the money.
There are two slightly different definitions, according to whether one uses the current price (spot) or future price (forward), specified as "at the money spot" or "at the money forward", etc.
This rough classification can be quantified by various definitions to express the moneyness as a number, measuring how far the asset is in the money or out of the money with respect to the strike – or, conversely, how far a strike is in or out of the money with respect to the spot (or forward) price of the asset. This quantified notion of moneyness is most importantly used in defining the relative volatility surface: the implied volatility in terms of moneyness, rather than absolute price. The most basic of these measures is simple moneyness, which is the ratio of spot (or forward) to strike, or the reciprocal, depending on convention. A particularly important measure of moneyness is the likelihood that the derivative will expire in the money, in the risk-neutral measure. It can be measured in percentage probability of expiring in the money, which is the forward value of a binary call option with the given strike, and is equal to the auxiliary N(d2) term in the Black–Scholes formula. This can also be measured in standard deviations, measuring how far above or below the strike price the current price is, in terms of volatility; this quantity is given by d2. (Standard deviations refer to the price fluctuations of the underlying instrument, not of the option itself.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The aim of this course is to expose EPFL bachelor students to some of the main areas in financial economics. The course will be organized around six themes. Students will obtain both practical insight
The aim of the course is to apply the theory of martingales in the context of mathematical finance. The course provides a detailed study of the mathematical ideas that are used in modern financial mat
The objective of this course is to provide a detailed coverage of the standard models for the valuation and hedging of derivatives products such as European options, American options, forward contract
In finance, an option is a contract which conveys to its owner, the holder, the right, but not the obligation, to buy or sell a specific quantity of an underlying asset or instrument at a specified strike price on or before a specified date, depending on the style of the option. Options are typically acquired by purchase, as a form of compensation, or as part of a complex financial transaction.
In finance, the strike price (or exercise price) of an option is a fixed price at which the owner of the option can buy (in the case of a call), or sell (in the case of a put), the underlying security or commodity. The strike price may be set by reference to the spot price, which is the market price of the underlying security or commodity on the day an option is taken out. Alternatively, the strike price may be fixed at a discount or premium. The strike price is a key variable in a derivatives contract between two parties.
In financial mathematics, the implied volatility (IV) of an option contract is that value of the volatility of the underlying instrument which, when input in an option pricing model (such as Black–Scholes), will return a theoretical value equal to the current market price of said option. A non-option financial instrument that has embedded optionality, such as an interest rate cap, can also have an implied volatility. Implied volatility, a forward-looking and subjective measure, differs from historical volatility because the latter is calculated from known past returns of a security.
Covers financial economics basics, including time value of money, risk/return tradeoff, and capital structure, preparing students for real-world financial decision-making.
Throughout history, the pace of knowledge and information sharing has evolved into an unthinkable speed and media. At the end of the XVII century, in Europe, the ideas that would shape the "Age of Enlightenment" were slowly being developed in coffeehouses, ...
Nonparametric inference for functional data over two-dimensional domains entails additional computational and statistical challenges, compared to the one-dimensional case. Separability of the covariance is commonly assumed to address these issues in the de ...
TAYLOR & FRANCIS INC2022
In this article, we account for the liquidity risk in the underlying assets when pricing European exchange options, which has not been considered in the literature. An Ornstein-Uhlenbeck process with the mean -reversion property is selected to model the ma ...