Summary
Automatic parallelization, also auto parallelization, or autoparallelization refers to converting sequential code into multi-threaded and/or vectorized code in order to use multiple processors simultaneously in a shared-memory multiprocessor (SMP) machine. Fully automatic parallelization of sequential programs is a challenge because it requires complex program analysis and the best approach may depend upon parameter values that are not known at compilation time. The programming control structures on which autoparallelization places the most focus are loops, because, in general, most of the execution time of a program takes place inside some form of loop. There are two main approaches to parallelization of loops: pipelined multi-threading and cyclic multi-threading. For example, consider a loop that on each iteration applies a hundred operations, and runs for a thousand iterations. This can be thought of as a grid of 100 columns by 1000 rows, a total of 100,000 operations. Cyclic multi-threading assigns each row to a different thread. Pipelined multi-threading assigns each column to a different thread. This is the first stage where the scanner will read the input source files to identify all static and extern usages. Each line in the file will be checked against pre-defined patterns to segregate into tokens. These tokens will be stored in a file which will be used later by the grammar engine. The grammar engine will check patterns of tokens that match with pre-defined rules to identify variables, loops, control statements, functions etc. in the code restart. The analyzer is used to identify sections of code that can be executed concurrently. The analyzer uses the static data information provided by the scanner-parser. The analyzer will first find all the totally independent functions and mark them as individual tasks. The analyzer then finds which tasks have dependencies. The scheduler will list all the tasks and their dependencies on each other in terms of execution and start times 6h.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
PHYS-743: Parallel programming
Learn the concepts, tools and API's that are needed to debug, test, optimize and parallelize a scientific application on a cluster from an existing code or from scratch. Both OpenMP (shared memory) an
CS-307: Introduction to multiprocessor architecture
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
AR-451: Architecture and construction of the city I
Ce cours propose des approches croisées permettant de clarifier les articulations des différentes échelles (architecturale, urbaine, territoriale). Il se propose d'étudier les modes de constitution d'
Related publications (50)
Related concepts (4)
Loop optimization
In compiler theory, loop optimization is the process of increasing execution speed and reducing the overheads associated with loops. It plays an important role in improving cache performance and making effective use of parallel processing capabilities. Most execution time of a scientific program is spent on loops; as such, many compiler optimization techniques have been developed to make them faster. Since instructions inside loops can be executed repeatedly, it is frequently not possible to give a bound on the number of instruction executions that will be impacted by a loop optimization.
Intrinsic function
In computer software, in compiler theory, an intrinsic function (or built-in function) is a function (subroutine) available for use in a given programming language whose implementation is handled specially by the compiler. Typically, it may substitute a sequence of automatically generated instructions for the original function call, similar to an inline function. Unlike an inline function, the compiler has an intimate knowledge of an intrinsic function and can thus better integrate and optimize it for a given situation.
Optimizing compiler
In computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of optimizing transformations, algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster.
Show more