β-Hydroxy β-methylbutyric acid (HMB), otherwise known as its conjugate base, β-hydroxy β-methylbutyrate, is a naturally produced substance in humans that is used as a dietary supplement and as an ingredient in certain medical foods that are intended to promote wound healing and provide nutritional support for people with muscle wasting due to cancer or HIV/AIDS. In healthy adults, supplementation with HMB has been shown to increase exercise-induced gains in muscle size, muscle strength, and lean body mass, reduce skeletal muscle damage from exercise, improve aerobic exercise performance, and expedite recovery from exercise. Medical reviews and meta-analyses indicate that HMB supplementation also helps to preserve or increase lean body mass and muscle strength in individuals experiencing age-related muscle loss. HMB produces these effects in part by stimulating the production of proteins and inhibiting the breakdown of proteins in muscle tissue. No adverse effects from long-term use as a dietary supplement in adults have been found.
HMB is sold as a dietary supplement at a cost of about –50 per month when taking 3 grams per day. HMB is also contained in several nutritional products, including certain formulations of Ensure and Juven. HMB is also present in insignificant quantities in certain foods, such as alfalfa, asparagus, avocados, cauliflower, grapefruit, and catfish.
The effects of HMB on human skeletal muscle were first discovered by Steven L. Nissen at Iowa State University in the mid-1990s. HMB has not been banned by the National Collegiate Athletic Association, World Anti-Doping Agency, or any other prominent national or international athletic organization. In 2006, only about 2% of college student athletes in the United States used HMB as a dietary supplement. As of 2017, HMB has found widespread use as an ergogenic supplement among young athletes.
HMB is sold as an over-the-counter dietary supplement in the free acid form, β-hydroxy β-methylbutyric acid (HMB-FA), and as a monohydrated calcium salt of the conjugate base, calcium β-hydroxy β-methylbutyrate monohydrate (HMB-Ca, CaHMB).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
β-Hydroxybutyric acid, also known as 3-hydroxybutyric acid or BHB, is an organic compound and a beta hydroxy acid with the chemical formula CH3CH(OH)CH2CO2H; its conjugate base is β-hydroxybutyrate, also known as 3-hydroxybutyrate. β-Hydroxybutyric acid is a chiral compound with two enantiomers: D-β-hydroxybutyric acid and L-β-hydroxybutyric acid. Its oxidized and polymeric derivatives occur widely in nature. In humans, D-β-hydroxybutyric acid is one of two primary endogenous agonists of hydroxycarboxylic acid receptor 2 (HCA2), a Gi/o-coupled G protein-coupled receptor (GPCR).
The 'mammalian target of rapamycin (mTOR), also referred to as the mechanistic target of rapamycin', and sometimes called FK506-binding protein 12-rapamycin-associated protein 1 (FRAP1), is a kinase that in humans is encoded by the MTOR gene. mTOR is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases. mTOR links with other proteins and serves as a core component of two distinct protein complexes, mTOR complex 1 and mTOR complex 2, which regulate different cellular processes.
Strength training or resistance training involves the performance of physical exercises that are designed to improve strength and endurance. It is often associated with the lifting of weights. It can also incorporate a variety of training techniques such as bodyweight exercises, isometrics, and plyometrics. Training works by progressively increasing the force output of the muscles and uses a variety of exercises and types of . Strength training is primarily an anaerobic activity, although circuit training also is a form of aerobic exercise.
Explores redox reactions of aldehydes, including Evans-Tishchenko, Cannizzaro, and Benzoin reactions, reduction of imines, and Wittig reaction variants.
Selective synthesis of nanocluster (NC) isomers with tailored structures holds significant importance for enhancing their applications. Here, we develop an effective strategy for the selective synthesis of CdS NC isomers through the judicious choice of a p ...
Background: The relationship between amino acids, B vitamins, and their metabolites with D3-creatine (D3Cr) dilution muscle mass, a more direct measure of skeletal muscle mass, has not been investigated. We aimed to assess associations of plasma metabolite ...
The age-related loss of skeletal muscle function starts from midlife and if left unaddressed can lead to an impaired quality of life. A growing body of evidence indicates that mitochondrial dysfunction is causally involved with muscle aging. Muscles are ti ...