An electron avalanche is a process in which a number of free electrons in a transmission medium are subjected to strong acceleration by an electric field and subsequently collide with other atoms of the medium, thereby ionizing them (impact ionization). This releases additional electrons which accelerate and collide with further atoms, releasing more electrons—a chain reaction. In a gas, this causes the affected region to become an electrically conductive plasma.
The avalanche effect was discovered by John Sealy Townsend in his work between 1897 and 1901, and is also known as the Townsend discharge.
Electron avalanches are essential to the dielectric breakdown process within gases. The process can culminate in corona discharges, streamers, leaders, or in a spark or continuous arc that completely bridges the gap between the electrical conductors that are applying the voltage. The process extends to huge sparks — streamers in lightning discharges propagate by formation of electron avalanches created in the high potential gradient ahead of the streamers' advancing tips. Once begun, avalanches are often intensified by the creation of photoelectrons as a result of ultraviolet radiation emitted by the excited medium's atoms in the aft-tip region.
The process can also be used to detect ionizing radiation by using the gas multiplication effect of the avalanche process. This is the ionisation mechanism of the Geiger–Müller tube and, to a limited extent, of the proportional counter and is also used in spark chambers and other wire chambers.
A plasma begins with a rare natural 'background' ionization event of a neutral air molecule, perhaps as the result of photoexcitation or background radiation. If this event occurs within an area that has a high potential gradient, the positively charged ion will be strongly attracted toward, or repelled away from, an electrode depending on its polarity, whereas the electron will be accelerated in the opposite direction. Because of the huge mass difference, electrons are accelerated to a much higher velocity than ions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
In electromagnetism, a streamer discharge, also known as filamentary discharge, is a type of transient electric discharge which forms at the surface of a conductive electrode carrying a high voltage in an insulating medium such as air. Streamers are luminous writhing branching sparks, plasma channels composed of ionized air molecules, which repeatedly strike out from the electrode into the air.
In electromagnetism, the Townsend discharge or Townsend avalanche is a ionisation process for gases where free electrons are accelerated by an electric field, collide with gas molecules, and consequently free additional electrons. Those electrons are in turn accelerated and free additional electrons. The result is an avalanche multiplication that permits electrical conduction through the gas. The discharge requires a source of free electrons and a significant electric field; without both, the phenomenon does not occur.
Plasma () is one of four fundamental states of matter, characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, being mostly associated with stars, including the Sun. Extending to the rarefied intracluster medium and possibly to intergalactic regions, plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field.
Explores gaseous ionisation detectors, including ionisation chambers, proportional counters, and Geiger-Müller counters, discussing their principles, operation, and applications.
Explores gaseous ionisation detectors, including ionisation chambers, proportional counters, and Geiger-Müller counters, discussing their principles, operation modes, and applications.
Low-temperature plasmas (LTPs) at atmospheric pressure hold great promise for disinfection and sterilization applications. When compared to traditional sterilization technologies like autoclaving, LTPs may offer several benefits, including reduced energy c ...
EPFL2024
, , , , , ,
We present a single-photon avalanche diode (SPAD) developed in 55 nm bipolar-CMOS-DMOS (BCD) technology, which achieves high photon detection probability (PDP) while its breakdown voltage is lower than 20 V. To enhance the PDP performance, the SPAD junctio ...
Electron cloud continues to be one of the main limiting factors of the Large Hadron Collider (LHC), the biggest accelerator at CERN. These clouds form in the beam chamber when positively charged particles are passing through and cause unwanted effects in b ...