In meteorology, an air mass is a volume of air defined by its temperature and humidity. Air masses cover many hundreds or thousands of square miles, and adapt to the characteristics of the surface below them. They are classified according to latitude and their continental or maritime source regions. Colder air masses are termed polar or arctic, while warmer air masses are deemed tropical. Continental and superior air masses are dry, while maritime and monsoon air masses are moist. Weather fronts separate air masses with different density (temperature or moisture) characteristics. Once an air mass moves away from its source region, underlying vegetation and water bodies can quickly modify its character. Classification schemes tackle an air mass's characteristics, as well as modification.
The Bergeron classification is the most widely accepted form of air mass classification, though others have produced more refined versions of this scheme over different regions of the globe. Air mass classification involves three letters. The first letter describes its moisture properties – "c" represents continental air masses (dry), and "m" represents maritime air masses (moist). Its source region follows: "T" stands for Tropical, "P" stands for Polar, "A" stands for Arctic or Antarctic, "M" stands for monsoon, "E" stands for Equatorial, and "S" stands for adiabatically drying and warming air formed by significant downward motion in the atmosphere. For instance, an air mass originating over the desert southwest of the United States in summer may be designated "cT". An air mass originating over northern Siberia in winter may be indicated as "cA".
The stability of an air mass may be shown using a third letter, either "k" (air mass colder than the surface below it) or "w" (air mass warmer than the surface below it). An example of this might be a polar air mass blowing over the Gulf Stream, denoted as "cPk". Occasionally, one may also encounter the use of an apostrophe or "degree tick" denoting that a given air mass having the same notation as another it is replacing is colder than the replaced air mass (usually for polar air masses).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor (reaching 100% relative humidity), so that the water condenses and "precipitates" or falls. Thus, fog and mist are not precipitation but colloids, because the water vapor does not condense sufficiently to precipitate.
The Köppen climate classification is one of the most widely used climate classification systems. It was first published by German-Russian climatologist Wladimir Köppen (1846–1940) in 1884, with several later modifications by Köppen, notably in 1918 and 1936. Later, German climatologist Rudolf Geiger (1894–1981) introduced some changes to the classification system, which is thus sometimes called the Köppen–Geiger climate classification.
Extratropical cyclones, sometimes called mid-latitude cyclones or wave cyclones, are low-pressure areas which, along with the anticyclones of high-pressure areas, drive the weather over much of the Earth. Extratropical cyclones are capable of producing anything from cloudiness and mild showers to severe gales, thunderstorms, blizzards, and tornadoes. These types of cyclones are defined as large scale (synoptic) low pressure weather systems that occur in the middle latitudes of the Earth.
The main cause of flash and pluvial floods in cities is short-duration extreme rainfall events. The built environment can either intensify or weaken extreme rainfall intensity depending on the urban fabric that controls the local environmental and climatic ...
2023
This study examines the impact of light absorption from biomass burning (BB) brown carbon (BrC) in the Mediterranean basin from local and distant fire incidents during a typical fire season in August 2019 and under severe fire activity in August 2021. The ...
The near-surface boundary layer above patchy snow cover in mountainous terrain is characterized by a highly complex interplay of various flows on multiple scales. In this study, we present data from a comprehensive field campaign that cover a period of 21 ...