In theoretical physics, negative mass is a hypothetical type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. Such matter would violate one or more energy conditions and show some strange properties such as the oppositely oriented acceleration for an applied force orientation. It is used in certain speculative hypothetical technologies, such as time travel to the past and future, construction of traversable artificial wormholes, which may also allow for time travel, Krasnikov tubes, the Alcubierre drive, and potentially other types of faster-than-light warp drives. Currently, the closest known real representative of such exotic matter is a region of negative pressure density produced by the Casimir effect.
In December 2018, astrophysicist Jamie Farnes from the University of Oxford proposed a "dark fluid" theory, related, in part, to notions of gravitationally repulsive negative masses, presented earlier by Albert Einstein, that may help better understand, in a testable manner, the considerable amounts of unknown dark matter and dark energy in the cosmos.
Negative mass is any region of space in which for some observers the mass density is measured to be negative. This may occur due to a region of space in which the sum of the three normal stress components (pressure on each of three axes) of the Einstein stress–energy tensor is larger in magnitude than the mass density. All of these are violations of one or another variant of the positive energy condition of Einstein's general theory of relativity; however, the positive energy condition is not a required condition for the mathematical consistency of the theory.
In considering negative mass, it is important to consider which of these concepts of mass are negative. Ever since Newton first formulated his theory of gravity, there have been at least three conceptually distinct quantities called mass:
inertial mass – the mass m that appears in Newton's second law of motion, F = m a
"active" gravitational mass – the mass that produces a gravitational field that other masses respond to
"passive" gravitational mass – the mass that responds to an external gravitational field by accelerating.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the universe does not expand at a constant rate; rather, the universe's expansion is accelerating. Understanding the universe's evolution requires knowledge of its starting conditions and composition. Before these observations, scientists thought that all forms of matter and energy in the universe would only cause the expansion to slow down over time.
A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations. A wormhole can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both). Wormholes are consistent with the general theory of relativity, but whether wormholes actually exist remains to be seen.
The Alcubierre drive (alkuˈβjere) is a speculative warp drive idea according to which a spacecraft could achieve apparent faster-than-light travel by contracting space in front of it and expanding space behind it, under the assumption that a configurable energy-density field lower than that of vacuum (that is, negative mass) could be created. Proposed by theoretical physicist Miguel Alcubierre in 1994, the Alcubierre drive is based on a solution of Einstein's field equations.
In recent years, the conjecture on the instability of Anti-de Sitter spacetime, put forward by Dafermos-Holzegel (Dynamic instability of solitons in 4 + 1 dimesnional gravity with negative cosmological constant, 2006. https://www.dpmms.cam.ac.uk/similar to ...
Explores design discussions and documentation in software development, emphasizing scientific programming and code documentation tools like Doxygen and Sphinx.
While momentum-based accelerated variants of stochastic gradient descent (SGD) are widely used when training machine learning models, there is little theoretical understanding on the generalization error of such methods. In this work, we first show that th ...
Brookline2024
, , , ,
Synchrotron radiation observed in a quiescent Tokamak a Configuration Variable (TCV) runaway discharge is studied using filtered camera images targeting three distinct wavelength intervals. Through the tomographic simultaneous algebraic reconstruction tech ...