Concept

Batoidea

Summary
Batoidea is a superorder of cartilaginous fishes, commonly known as rays. They and their close relatives, the sharks, comprise the subclass Elasmobranchii. Rays are the largest group of cartilaginous fishes, with well over 600 species in 26 families. Rays are distinguished by their flattened bodies, enlarged pectoral fins that are fused to the head, and gill slits that are placed on their ventral surfaces. Batoid locomotion Batoids are flat-bodied, and, like sharks, are cartilaginous fish, meaning they have a boneless skeleton made of a tough, elastic cartilage. Most batoids have five ventral slot-like body openings called gill slits that lead from the gills, but the Hexatrygonidae have six. Batoid gill slits lie under the pectoral fins on the underside, whereas a shark's are on the sides of the head. Most batoids have a flat, disk-like body, with the exception of the guitarfishes and sawfishes, while most sharks have a spindle-shaped body. Many species of batoid have developed their pectoral fins into broad flat wing-like appendages. The anal fin is absent. The eyes and spiracles are located on top of the head. Batoids have a ventrally located mouth and can considerably protrude their upper jaw (palatoquadrate cartilage) away from the cranium to capture prey. The jaws have euhyostylic type suspension, which relies completely on the hyomandibular cartilages for support. Bottom-dwelling batoids breathe by taking water in through the spiracles, rather than through the mouth as most fish do, and passing it outward through the gills. Batoids reproduce in a number of ways. As is characteristic of elasmobranchs, batoids undergo internal fertilization. Internal fertilization is advantageous to batoids as it conserves sperm, does not expose eggs to consumption by predators, and ensures that all the energy involved in reproduction is retained and not lost to the environment. All skates and some rays are oviparous (egg laying) while other rays are ovoviviparous, meaning that they give birth to young which develop in a womb but without involvement of a placenta.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (19)
Fish fin
Fins are distinctive anatomical features composed of bony spines or rays protruding from the body of Actinopterygii and Chondrichthyes fishes. They are covered with skin and joined together either in a webbed fashion, as seen in most bony fish, or similar to a flipper, as seen in sharks. Apart from the tail or caudal fin, fish fins have no direct connection with the spine and are supported only by muscles. Their principal function is to help the fish swim.
Electric organ (fish)
In biology, the electric organ is an organ that an electric fish uses to create an electric field. Electric organs are derived from modified muscle or in some cases nerve tissue, and have evolved at least six times among the elasmobranchs and teleosts. These fish use their electric discharges for navigation, communication, mating, defence, and in strongly electric fish also for the incapacitation of prey. The electric organs of two strongly electric fish, the torpedo ray and the electric eel were first studied in the 1770s by John Walsh, Hugh Williamson, and John Hunter.
Public aquarium
A public aquarium () or public water zoo is the aquatic counterpart of a zoo, which houses living aquatic animal and plant specimens for public viewing. Most public aquariums feature tanks larger than those kept by home aquarists, as well as smaller tanks. Since the first public aquariums were built in the mid-19th century, they have become popular and their numbers have increased. Most modern accredited aquariums stress conservation issues and educating the public.
Show more