Quantum noise is noise arising from the indeterminate state of matter in accordance with fundamental principles of quantum mechanics, specifically the uncertainty principle and via zero-point energy fluctuations. Quantum noise is due to the apparently discrete nature of the small quantum constituents such as electrons, as well as the discrete nature of quantum effects, such as photocurrents. Quantified noise is similar to classical noise theory and will not always return an asymmetric spectral density. Shot noise as coined by J. Verdeyen is a form of quantum noise related to the statistics of photon counting, the discrete nature of electrons, and intrinsic noise generation in electronics. In contrast to shot noise, the quantum mechanical uncertainty principle sets a lower limit to a measurement. The uncertainty principle requires any amplifier or detector to have noise. Macroscopic manifestations of quantum phenomena are easily disturbed, so quantum noise is mainly observed in systems where conventional sources of noise are suppressed. In general, noise is uncontrolled random variation from an expected value and is typically unwanted. General causes are thermal fluctuations, mechanical vibrations, industrial noise, fluctuations of voltage from a power supply, thermal noise due to Brownian motion, instrumentation noise, a laser's output mode deviating from the desired mode of operation, etc. If present, and unless carefully controlled, these other noise sources typically dominate and mask quantum noise. In astronomy, a device which pushes against the limits of quantum noise is the LIGO gravitational wave observatory. Heisenberg's microscope Quantum noise can be illustrated by considering a Heisenberg microscope where an atom's position is measured from the scattering of photons. The uncertainty principle is given as, Where the is the uncertainty in an atom's position, and the is the uncertainty of the momentum or sometimes called the backaction (momentum transferred to the atom) when near the quantum limit.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.