In machining, a shaper is a type of machine tool that uses linear relative motion between the workpiece and a single-point cutting tool to machine a linear toolpath. Its cut is analogous to that of a lathe, except that it is (archetypally) linear instead of helical.
A wood shaper is a functionally different woodworking tool, typically with a powered rotating cutting head and manually fed workpiece, usually known simply as a shaper in North America and spindle moulder in the UK.
A metalworking shaper is somewhat analogous to a metalworking planer, with the cutter riding a ram that moves relative to a stationary workpiece, rather than the workpiece moving beneath the cutter. The ram is typically actuated by a mechanical crank inside the column, though hydraulically actuated shapers are increasingly used. Adding axes of motion to a shaper can yield helical tool
paths, as also done in helical planing.
A single-point cutting tool is rigidly held in the tool holder, which is mounted on the ram. The work piece is rigidly held in a vise or clamped directly on the table. The table may be supported at the outer end. The ram reciprocates and the cutting tool, held in the tool holder, moves forwards and backwards over the work piece. In a standard shaper, cutting of material takes place during the forward stroke of the ram and the return stroke remains idle. The return is governed by a quick return mechanism. The depth of the cut increments by moving the workpiece, and the workpiece is fed by a pawl and ratchet mechanism.
Shapers are mainly classified as standard, draw-cut, horizontal, universal, vertical, geared, crank, hydraulic, contour and traveling head, with a horizontal arrangement most common. Vertical shapers are generally fitted with a rotary table to enable curved surfaces to be machined (same idea as in helical planing). The vertical shaper is essentially the same thing as a slotter (slotting machine), although technically a distinction can be made if one defines a true vertical shaper as a machine whose slide can be moved from the vertical.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Machining is a process in which a material (often metal) is cut to a desired final shape and size by a controlled material-removal process. The methods that have this common theme are collectively called subtractive manufacturing, which utilizes machine tools, in contrast to additive manufacturing (3D printing), which uses controlled addition of material. Machining is a part of the manufacture of many metal products, but it can also be used on other materials such as wood, plastic, ceramic, and composite material.
Broaching is a machining process that uses a toothed tool, called a broach, to remove material. There are two main types of broaching: linear and rotary. In linear broaching, which is the more common process, the broach is run linearly against a surface of the workpiece to produce the cut. Linear broaches are used in a broaching machine, which is also sometimes shortened to broach. In rotary broaching, the broach is rotated and pressed into the workpiece to cut an axisymmetric shape.
Milling is the process of machining using rotary cutters to remove material by advancing a cutter into a workpiece. This may be done by varying directions on one or several axes, cutter head speed, and pressure. Milling covers a wide variety of different operations and machines, on scales from small individual parts to large, heavy-duty gang milling operations. It is one of the most commonly used processes for machining custom parts to precise tolerances. Milling can be done with a wide range of machine tools.
This course gives an introduction to production methods and manufacturing technologies used in microengineering. The focus is given on the understanding of physical phenomena underlying the processes,
The state of the art in the domain of additive production processes
(the part is built by material addition without use of a shape tool) will be presented.
The main application/benefits/shortcomings
Sub-millimeter scale devices are developing rapidly taking smaller, smarter, and more precise forms. This is achieved thanks to advancements in micro-manufacturing tools and techniques. For micro-production, a miniaturization of the machinery is a prominen ...
Springer London Ltd2017
, , ,
This paper illustrates the role of additive manufacturing (AM) as enabling technology to realize high-performance low-cost antennas for Ka-band applications. In addition to the inherent electromagnetic challenges implicit in the conception of such complex ...
In crowding, target perception deteriorates when flanking elements are added. Crowding is traditionally characterized by target-flanker interactions which are (1) deleterious, (2) spatially confined within Bouma’s window, and (3) feature specific. Here, we ...