Summary
The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens; although more generally the rule is applicable for the s-block and p-block of the periodic table. Other rules exist for other elements, such as the duplet rule for hydrogen and helium, or the 18-electron rule for transition metals. The valence electrons can be counted using a Lewis electron dot diagram as shown at the right for carbon dioxide. The electrons shared by the two atoms in a covalent bond are counted twice, once for each atom. In carbon dioxide each oxygen shares four electrons with the central carbon, two (shown in red) from the oxygen itself and two (shown in black) from the carbon. All four of these electrons are counted in both the carbon octet and the oxygen octet, so that both atoms are considered to obey the octet rule. Ionic bonding is common between pairs of atoms, where one of the pair is a metal of low electronegativity (such as sodium) and the second a nonmetal of high electronegativity (such as chlorine). A chlorine atom has seven electrons in its third and outer electron shell, the first and second shells being filled with two and eight electrons respectively. The first electron affinity of chlorine (the energy release when chlorine gains an electron to form Cl−) is 349 kJ per mole of chlorine atoms. Adding a second electron to form a hypothetical Cl2- would require energy, energy that cannot be recovered by the formation of a chemical bond. The result is that chlorine will very often form a compound in which it has eight electrons in its outer shell (a complete octet), as in Cl−. A sodium atom has a single electron in its outermost electron shell, the first and second shells again being full with two and eight electrons respectively.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.