Summary
In chemistry, the valence (US spelling) or valency (British spelling) of an atom is a measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Different sources specify different definitions, but valence is generally understood to be the number of chemical bonds that each atom of a given element typically forms; for a specified compound the valence of an atom is the number of bonds formed by that atom. Double bonds are considered to be two bonds, and triple bonds to be three. In most compounds, the valence of hydrogen is 1, of oxygen is 2, of nitrogen is 3, and of carbon is 4. Valence is not to be confused with the related concepts of the coordination number, the oxidation state, or the number of valence electrons for a given atom. The valence is the combining capacity of an atom of a given element, determined by the number of hydrogen atoms that it combines with. In methane, carbon has a valence of 4; in ammonia, nitrogen has a valence of 3; in water, oxygen has a valence of 2; and in hydrogen chloride, chlorine has a valence of 1. Chlorine, as it has a valence of one, can be substituted for hydrogen in many compounds. Phosphorus has a valence 3 in phosphine () and a valence of 5 in phosphorus pentachloride (), which shows that elements may have exhibit than one valence. The structural formula of a compound represents the connectivity of the atoms, with lines drawn between two atoms to represent bonds. The two tables below show examples of different compounds, their structural formulas, and the valences for each element of the compound. Valence is defined by the IUPAC as: The maximum number of univalent atoms (originally hydrogen or chlorine atoms) that may combine with an atom of the element under consideration, or with a fragment, or for which an atom of this element can be substituted. An alternative modern description is: The number of hydrogen atoms that can combine with an element in a binary hydride or twice the number of oxygen atoms combining with an element in its oxide or oxides.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.