La trigonométrie de Wildberger (dite aussi trigonométrie rationnelle car elle ne fait aucun recours aux nombres irrationnels) constitue une réécriture de la trigonométrie traditionnelle. Elle s’en distingue en évitant non seulement l’usage des fonctions trigonométriques classiques, mais même l’usage de nombres transcendants tels que π dans l’écriture des formules. Elle fut autopubliée en 2005 dans Divine Proportions: Rational Trigonometry to Universal Geometry par Norman Wildberger, Ph. D. de mathématiques de l'université Yale et professeur associé en mathématiques à l’université de Nouvelle-Galles du Sud à Sydney. On pratiquait depuis un quart de siècle la trigonométrie entière utilisée dès les premiers jeux graphiques sur ordinateur, afin d’éviter le recours aux fonctions flottantes dont le calcul était lent (jusqu’au 80486, les processeurs de la gamme i386 n’avaient pas de coprocesseur arithmétique en standard). Cette trigonométrie simplifiée dont la résolution ne dépassait ni ne voulait dépasser la résolution du pixel présentait le double mérite : de sa simplicité de mise en œuvre (par utilisation intensive à la fois de tables et des formules du style etc. ; d’une vitesse de calcul alors largement supérieure à celle du flottant. Wildberger retourne le problème en partant au contraire des méthodes d’addition des sinus et cosinus pris cette fois-ci comme axiomes de théorie, et développe une trigonométrie en nombres rationnels, en présentant cette construction comme plus satisfaisante pour l’esprit que l’introduction « classique ». Celle-ci évite d’introduire la notion de nombre réel, abstraction certes intéressante en soi, mais qui n’a pas d’intérêt dans le domaine spécifique du calcul numérique : il est toujours possible de pousser une précision aussi loin qu’on le désire en employant dans son système uniquement des rationnels, et sans avoir, à aucun moment du calcul, à postuler l’existence de nombres réels.