Une identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation.
Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes.
Les fonctions trigonométriques sont définies géométriquement ou analytiquement. Elles servent beaucoup en intégration, pour intégrer des fonctions « non trigonométriques » : un procédé habituel consiste à effectuer un changement de variable en utilisant une fonction trigonométrique, et à simplifier ensuite l'intégrale obtenue avec les identités trigonométriques.
Notation : si ƒ est une fonction trigonométrique, ƒ désigne la fonction qui à tout réel associe le carré de . Par exemple : .
Les relations entre fonctions trigonométriques résultent d'une part des définitions
et d'autre part de l'application du théorème de Pythagore, notamment :
Note : Toutes ces formules sont également utilisables pour des ajouts d'angles, il suffit pour cela de prendre l'opposé : par exemple,. Il suffit ensuite d'appliquer la formule de simplification correspondante de la première colonne.
Certaines des relations ci-dessus sont renforcées par les équivalences suivantes :
Les deux formules principales sont les formules d'addition pour le cosinus et le sinus :
En remplaçant b par son opposé, on obtient aussi les formules de différence :
vignette|alt=Cos(a+b) et Sin(a+b)|Démonstration géométrique des formules d'addition de cos(a+b) et sin(a+b)
Le moyen le plus rapide pour les démontrer est, à partir de la définition analytique du cosinus et du sinus, d'utiliser les formules d'Euler.
Il existe de nombreuses autres démonstrations possibles, utilisant les propriétés d'une corde dans un cercle, la relation entre cosinus d'un angle et produit scalaire (en évaluant de deux façons différentes le produit scalaire des vecteurs (cos a, sin a) et (cos b, sin b), la propriété du changement de repère ou encore la démonstration matricielle ci-dessous.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
En trigonométrie, les formules de l'arc moitié sont des identités trigonométriques permettant d'exprimer les valeurs de fonctions trigonométriques d'un angle en fonction de la tangente de la moitié de cet angle. Les trois principales sont celles donnant les sinus, cosinus et tangente en fonction de la tangente de l'angle moitié : On trouve également : et ; et ; Les trois formules principales se déduisent des formules de l'angle double et de l'égalité cos + sin = 1.
L'identité trigonométrique pythagoricienne exprime le théorème de Pythagore en termes de fonctions trigonométriques. Avec les formules de somme d'angles, c'est l'une des relations fondamentales entre les fonctions sinus et cosinus. Cette relation entre le sinus et le cosinus est parfois appelée l'identité trigonométrique fondamentale de Pythagore. Cette identité trigonométrique est donnée par la formule : où signifie .
En algèbre, le casus irreducibilis (latin pour « cas irréductible ») désigne un cas apparaissant lors de la recherche des racines réelles d'un polynôme à coefficients entiers de degré 3 ou plus : c'est celui où les racines ne peuvent s'exprimer à l'aide de radicaux réels. Le casus irreducibilis le plus connu est celui des polynômes de degré 3 irréductibles dans les rationnels (impossibles à factoriser en polynômes de degré moindre) ayant trois racines réelles, cas qui a été prouvé par Pierre Wantzel en 1843.
Explore l'équation d'onde pour une chaîne vibrante et sa solution numérique en utilisant des formules de différence finie et le schéma Newmark dans MATLAB/GNU Octave.
A system for measuring synchrony between two or more regions, or within a single region, of a subject's brain. The system can include a signal conditioning module in communication with a phase extraction module. The signal conditioning module can receive a ...
2022
,
The present invention is related to a method of volumetric manufacturing a three-dimensional object or article by illuminating a non-transparent and/or absorptive photo-sensitive material with light patterns from multiple angles, comprising the steps of ca ...
Let G be a simple algebraic group over an algebraically closed field F of characteristic p >= h, the Coxeter number of G. We observe an easy 'recursion formula' for computing the Jantzen sum formula of a Weyl module with p-regular highest weight. We also d ...