In graph theory, a caterpillar or caterpillar tree is a tree in which all the vertices are within distance 1 of a central path.
Caterpillars were first studied in a series of papers by Harary and Schwenk. The name was suggested by Arthur Hobbs. As colorfully write, "A caterpillar is a tree which metamorphoses into a path when its cocoon of endpoints is removed."
The following characterizations all describe the caterpillar trees:
They are the trees for which removing the leaves and incident edges produces a path graph.
They are the trees in which there exists a path that contains every vertex of degree two or more.
They are the trees in which every vertex of degree at least three has at most two non-leaf neighbors.
They are the trees that do not contain as a subgraph the graph formed by replacing every edge in the star graph K1,3 by a path of length two.
They are the connected graphs that can be drawn with their vertices on two parallel lines, with edges represented as non-crossing line segments that have one endpoint on each line.
They are the trees whose square is a Hamiltonian graph. That is, in a caterpillar, there exists a cyclic sequence of all the vertices in which each adjacent pair of vertices in the sequence is at distance one or two from each other, and trees that are not caterpillars do not have such a sequence. A cycle of this type may be obtained by drawing the caterpillar on two parallel lines and concatenating the sequence of vertices on one line with the reverse of the sequence on the other line.
They are the trees whose line graphs contain a Hamiltonian path; such a path may be obtained by the ordering of the edges in a two-line drawing of the tree. More generally the number of edges that need to be added to the line graph of an arbitrary tree so that it contains a Hamiltonian path (the size of its Hamiltonian completion) equals the minimum number of edge-disjoint caterpillars that the edges of the tree can be decomposed into.
They are the connected graphs of pathwidth one.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
In graph theory, the graph bandwidth problem is to label the n vertices v_i of a graph G with distinct integers f(v_i) so that the quantity is minimized (E is the edge set of G). The problem may be visualized as placing the vertices of a graph at distinct integer points along the x-axis so that the length of the longest edge is minimized. Such placement is called linear graph arrangement, linear graph layout or linear graph placement. The weighted graph bandwidth problem is a generalization wherein the edges are assigned weights w_ij and the cost function to be minimized is .
In graph theory, a path decomposition of a graph G is, informally, a representation of G as a "thickened" path graph, and the pathwidth of G is a number that measures how much the path was thickened to form G. More formally, a path-decomposition is a sequence of subsets of vertices of G such that the endpoints of each edge appear in one of the subsets and such that each vertex appears in a contiguous subsequence of the subsets, and the pathwidth is one less than the size of the largest set in such a decomposition.
In the mathematical field of graph theory, a path graph (or linear graph) is a graph whose vertices can be listed in the order v_1, v_2, ..., v_n such that the edges are {v_i, v_i+1} where i = 1, 2, ..., n − 1. Equivalently, a path with at least two vertices is connected and has two terminal vertices (vertices that have degree 1), while all others (if any) have degree 2. Paths are often important in their role as subgraphs of other graphs, in which case they are called paths in that graph.
Listing all maximal cliques of a given graph has important applications in the analysis of social and biological networks. Parallelisation of maximal clique enumeration (MCE) algorithms on modern manycore processors is challenging due to the task-level par ...
Neurons are endowed with dendrites: tree-like structures that collect and transform inputs. These arborizations are believed to substantially enhance the computational repertoire of neurons. While it has long been known that dendrites are not iso-potential ...
EPFL2017
, ,
A directed acyclic graph (DAG) is the most common graphical model for representing causal relationships among a set of variables. When restricted to using only observational data, the structure of the ground truth DAG is identifiable only up to Markov equi ...