In mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory.
Highly structured ring spectra have better formal properties than multiplicative cohomology theories – a point utilized, for example, in the construction of topological modular forms, and which has allowed also new constructions of more classical objects such as Morava K-theory. Beside their formal properties, -structures are also important in calculations, since they allow for operations in the underlying cohomology theory, analogous to (and generalizing) the well-known Steenrod operations in ordinary cohomology. As not every cohomology theory allows such operations, not every multiplicative structure may be refined to an -structure and even in cases where this is possible, it may be a formidable task to prove that.
The rough idea of highly structured ring spectra is the following: If multiplication in a cohomology theory (analogous to the multiplication in singular cohomology, inducing the cup product) fulfills associativity (and commutativity) only up to homotopy, this is too lax for many constructions (e.g. for in the sense of category theory). On the other hand, requiring strict associativity (or commutativity) in a naive way is too restrictive for many of the wanted examples. A basic idea is that the relations need only hold up to homotopy, but these homotopies should fulfill again some homotopy relations, whose homotopies again fulfill some further homotopy conditions; and so on. The classical approach organizes this structure via operads, while the recent approach of Jacob Lurie deals with it using -operads in -categories. The most widely used approaches today employ the language of .
All these approaches depend on building carefully an underlying category of spectra.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, and topological algebraic geometry.
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, topological algebraic geometry and t
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements.
Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne).
In this thesis, we give a modern treatment of Dwyer's tame homotopy theory using the language of ∞-categories.We introduce the notion of tame spectra and show it has a concrete algebraic description.We then carry out a study of ∞-operads and ...
EPFL2022
,
Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category V, as ...
Twisted topological Hochschild homology of Cn-equivariant spectra was introduced by Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell, building on the work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory. In this paper we intr ...